Drying-Induced Shrinkage and Stress Generation of Ceramic Thin Films

2019 ◽  
Vol 2019.68 (0) ◽  
pp. 422
Author(s):  
Hiroya HANAI ◽  
Nobusuke KOBAYASHI ◽  
Yoshinori ITAYA ◽  
Akira SUAMI
2018 ◽  
Vol 2018.67 (0) ◽  
pp. 515
Author(s):  
Hiroya HANAI ◽  
Nobusuke KOBAYASHI ◽  
Yoshinori ITAYA

Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


2008 ◽  
Author(s):  
Xiaomei Guo ◽  
Kewen Kevin. Li ◽  
Xuesheng Chen ◽  
Yingyin Kevin. Zou ◽  
Hua Jiang

2002 ◽  
Vol 38 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Peng Miao ◽  
W. Balachandran ◽  
Ping Xiao

2012 ◽  
Vol 566 ◽  
pp. 145-149
Author(s):  
Hirotaka Tanabe ◽  
Keiji Ogawa ◽  
Yui Izumi ◽  
Tohru Takamatsu ◽  
Heisaburo Nakagawa ◽  
...  

In our previous study, it has been shown that improvement of the adhesive strength and substrate hardness of ceramic coated steels without compromising the film hardness can be achieved by applying laser quenching. In the present research, in order to demonstrate further development of this method, the fracture strength of laser-irradiated ceramic thin films (CrAlN, TiAlN and CrN) was investigated by sphere indentation testing. To prevent heat-induced changes in the substrate hardness, a cemented carbide WC-Co rather than steel was used as substrate material. While the fracture strength of each film decreased significantly through furnace heat treatment, it remained almost unchanged in case of the laser irradiated films. Laser quenching has been shown to effectively reduce the fracture strength loss of the ceramic thin films in coated steels.


2014 ◽  
pp. 293-298
Author(s):  
Arjun Dey ◽  
Anoop Mukhopadhyay

2014 ◽  
pp. 287-292
Author(s):  
Pradip Das ◽  
Arjun Dey ◽  
Anoop Mukhopadhyay

Sign in / Sign up

Export Citation Format

Share Document