scholarly journals High Speed Air Turbine of Small Capacity : Continued : the 1st

1952 ◽  
Vol 18 (67) ◽  
pp. 92-94
Author(s):  
Hiroshi AOKI
2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


1993 ◽  
Vol 38 (2) ◽  
pp. 131-143 ◽  
Author(s):  
J. E. Dyson ◽  
B. W. Darvell
Keyword(s):  

2010 ◽  
Vol 297-301 ◽  
pp. 396-401
Author(s):  
Mehrdad Vahdati ◽  
E. Azimi ◽  
Ali Shokuhfar

Air Spindles have been used in ultra precision machines for several years due to their advantages such as high speed rotation, low friction, and low vibration, [1]. Air spindles are widely used in these machines for producing precise work pieces. Although, spindles function on a very complicated theoretical basis, [2, 3], their structure is very simple and consists of mainly a rotor and a stator. The rotor/stator could be made of different shapes. A cylindrical shape is the one commonly in use. The spindle designed in this work has a spherical configuration. It has been designed so that it could be moved without application of electric motor and only by a wind turbine system, [4]. The spindle studied in this research uses compressed air for rotor suspension, and has an air turbine for rotating its shaft. A thin air film acts as bearing layer between rotor and stator. In design procedure, operation parameters such as air inlet pressure for turbine, air inlet pressure for bearing, diameter of turbine nuzzles, diameter of bearing nuzzles, clearance between rotor and stator and etc. have been considered, [5]. A prototype spindle has been manufactured using design criteria. The influence of above mentioned parameters have been recognized through experiments.


2017 ◽  
Vol 18 (10) ◽  
pp. 1403-1407 ◽  
Author(s):  
Makhsuda Juraeva ◽  
Bong Hwan Park ◽  
Kyung Jin Ryu ◽  
Dong Joo Song

1971 ◽  
Vol 4 (7) ◽  
pp. 544-544 ◽  
Author(s):  
W L Bond ◽  
D L Hecht
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yasuyuki Nishi ◽  
Hikaru Fushimi ◽  
Kazuo Shimomura ◽  
Takeshi Hasegawa

An air turbine handpiece is a dental abrasive device that rotates at high speed and uses compressed air as the driving force. It is characterized by its small size, light weight, and painless abrading due to its high-speed rotation, but its torque is small and noise level is high. Thus, to improve the performance of the air turbine handpiece, we conducted a performance test of an actual handpiece and a numerical analysis that modeled the whole handpiece; we also analyzed the internal flow of the handpiece. Results show that experimental and calculated values were consistent for a constant speed load method with the descending speed of 1 mm/min for torque and turbine output. When the tip of the blade was at the center of the nozzle, the torque was at its highest. This is likely because the jet from the nozzle entered the tip of the blade from a close distance that would not reduce the speed and exited along the blade.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
C. J. Teo ◽  
L. X. Liu ◽  
H. Q. Li ◽  
L. C. Ho ◽  
S. A. Jacobson ◽  
...  

Silicon based power micro-electro-mechanical system (MEMS) applications require high-speed microrotating machinery operating stably over a large range of operating conditions. The technical barriers to achieving stable high-speed operation with micro-gas-bearings are governed by (1) stringent fabrication tolerance requirements and manufacturing repeatability, (2) structural integrity of the silicon rotors, (3) rotordynamic coupling effects due to leakage flows, (4) bearing losses and power requirements, and (5) transcritical operation and whirl instability issues. To enable high-power density the micro-turbomachinery must be run at tip speeds comparable to conventional scale turbomachinery. The rotors of the micro-gas turbines are supported by hydrostatic gas journal and hydrostatic gas thrust bearings. Dictated by fabrication constraints the location of the gas journal bearings is at the outer periphery of the rotor. The high bearing surface speeds (target nearly 10×106 mm rpm), the very low bearing aspect ratios (L/D<0.1), and the laminar flow regime in the bearing gap (Re<500) place these micro-bearing designs into unexplored regimes in the parameter space. A gas-bearing supported micro-air turbine was developed with the objectives of demonstrating repeatable, stable high-speed gas-bearing operation and verifying the previously developed micro-gas-bearing analytical models. The paper synthesizes and integrates the established micro-gas-bearing theories and insight gained from extensive experimental work. The characteristics of the new micro-air turbine include a four-chamber journal bearing feed system to introduce stiffness anisotropy, labyrinth seals to avoid rotordynamic coupling effects of leakage flows, a reinforced thrust bearing structural design, a redesigned turbine rotor to increase power, a symmetric feed system to avoid flow and force nonuniformity, and a new rotor micro-fabrication methodology for reduced rotor imbalance. A large number of test devices were successfully manufactured demonstrating repeatable bearing geometry. More specifically, three sets of devices with different journal bearing clearances were produced to investigate the dynamic behavior as a function of bearing geometry. Experiments were conducted to characterize the “as-fabricated” bearing geometry, the damping ratio, and the natural frequencies. Repeatable high-speed bearing operation was demonstrated using isotropic and anisotropic bearing settings reaching whirl-ratios between 20 and 40. A rotor speed of 1.7×106 rpm (equivalent to 370 m/s blade tip speed or a bearing DN number of 7×106 mm rpm) was achieved demonstrating the feasibility of MEMS-based micro-scale rotating machinery and validating key aspects of the micro-gas-bearing theory.


Author(s):  
Shih-Chun Wang ◽  
Kuang-Yuh Huang

In order to improve the machining efficiency of ultra-precision and micro fabrication technology, a high speed spindle is essential for the minitype tools widely applied in systems such as PCB drilling machines, micro fabrication machines, dental handpieces, etc. To realize the high speed performance, the air driven turbine is verified to be more feasible than the electromagnetic actuator. Furthermore, the operational efficiency and quality of the high speed spindle are significantly influenced by the turbine blades and the bearings respectively. Through detailed configurational studies and performance analyses on diverse minitype turbine blades, we have derived the efficiency- and quality-influential parameters. And based on optimization results, we have developed a novel type of twin bladed air turbine (TB-air turbine), which consists of two parallel blades with an angular offset. The offseted twin blades can efficiently and smoothly transform pneumatic energy into rotational energy. Therefore, steady driving force and less dynamic unbalance are able to be easily achieved for reducing nervous disturbances such as vibration, noise, and wear. By applying finite element analytical method, the operational performances and quality of the new developed twin bladed air turbine such as rotational speed, torque, vibration and noise were analyzed for comprehending influences of the design parameters and the operational parameters. While the inlet angle, the blade shape and its geometric parameters are the dominant design parameters; the inlet pressure and mass flow rate, and the outlet pressure are the main operational parameters. Through the turbine blades, the pneumatic energy will be transformed into operational energy in form of the flow field and the pressure distribution and the energy loss in form of turbulence. Also by integrating knowledge of production technology, a neat design of the turbine blades suitable for automatic manufacturing process is developed. And furthermore, through an elaborate layout of the flow guiding, a minimum rotational runout can be effectively achieved without any complicate and costly dynamic balancing process. Consequently, it has significantly depressed the stream noise and raised the operation lifetime of bearings. According to our experimental verification, the vibration and the stream noise of our TB-air turbines are 60% and 50% lower than traditional counterparts respectively. Our developed minitype spindle with novel TB-air turbine can efficiently realize high speed rotation with high torque, less vibration and less noise.


Sign in / Sign up

Export Citation Format

Share Document