High-Speed Operation of a Gas-Bearing Supported MEMS-Air Turbine

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
C. J. Teo ◽  
L. X. Liu ◽  
H. Q. Li ◽  
L. C. Ho ◽  
S. A. Jacobson ◽  
...  

Silicon based power micro-electro-mechanical system (MEMS) applications require high-speed microrotating machinery operating stably over a large range of operating conditions. The technical barriers to achieving stable high-speed operation with micro-gas-bearings are governed by (1) stringent fabrication tolerance requirements and manufacturing repeatability, (2) structural integrity of the silicon rotors, (3) rotordynamic coupling effects due to leakage flows, (4) bearing losses and power requirements, and (5) transcritical operation and whirl instability issues. To enable high-power density the micro-turbomachinery must be run at tip speeds comparable to conventional scale turbomachinery. The rotors of the micro-gas turbines are supported by hydrostatic gas journal and hydrostatic gas thrust bearings. Dictated by fabrication constraints the location of the gas journal bearings is at the outer periphery of the rotor. The high bearing surface speeds (target nearly 10×106 mm rpm), the very low bearing aspect ratios (L/D<0.1), and the laminar flow regime in the bearing gap (Re<500) place these micro-bearing designs into unexplored regimes in the parameter space. A gas-bearing supported micro-air turbine was developed with the objectives of demonstrating repeatable, stable high-speed gas-bearing operation and verifying the previously developed micro-gas-bearing analytical models. The paper synthesizes and integrates the established micro-gas-bearing theories and insight gained from extensive experimental work. The characteristics of the new micro-air turbine include a four-chamber journal bearing feed system to introduce stiffness anisotropy, labyrinth seals to avoid rotordynamic coupling effects of leakage flows, a reinforced thrust bearing structural design, a redesigned turbine rotor to increase power, a symmetric feed system to avoid flow and force nonuniformity, and a new rotor micro-fabrication methodology for reduced rotor imbalance. A large number of test devices were successfully manufactured demonstrating repeatable bearing geometry. More specifically, three sets of devices with different journal bearing clearances were produced to investigate the dynamic behavior as a function of bearing geometry. Experiments were conducted to characterize the “as-fabricated” bearing geometry, the damping ratio, and the natural frequencies. Repeatable high-speed bearing operation was demonstrated using isotropic and anisotropic bearing settings reaching whirl-ratios between 20 and 40. A rotor speed of 1.7×106 rpm (equivalent to 370 m/s blade tip speed or a bearing DN number of 7×106 mm rpm) was achieved demonstrating the feasibility of MEMS-based micro-scale rotating machinery and validating key aspects of the micro-gas-bearing theory.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


Author(s):  
I Pierre ◽  
M Fillon

Hydrodynamic journal bearings are essential components of high-speed machinery. In severe operating conditions, the thermal dissipation is not a negligible phenomenon. Therefore, a three-dimensional thermohydrodynamic (THD) analysis has been developed that includes lubricant rupture and re-formation phenomena by conserving the mass flowrate. Then, the predictions obtained with the proposed numerical model are validated by comparison with the measurements reported in the literature. The effects of various geometric factors (length, diameter and radial clearance) and operating conditions (rotational speed, applied load and lubricant) on the journal bearing behaviour are analysed and discussed in order to inform bearing designers. Thus, it can be predicted that the bearing performance obtained highly depends on operating conditions and geometric configuration.


2021 ◽  
Author(s):  
Kiran Kumar ◽  
Vasudev Chaudhari ◽  
Srikrishna Sahu ◽  
Ravindra G. Devi

Abstract Fouling in compressor blades due to dirt deposition is a major issue in land-based gas turbines as it impedes the compressor performance and degrades the overall engine efficiency. The online water washing approach is an effective alternate for early-stage compressor blade cleaning and to optimize the time span between offline washing and peak availability. In such case, typically a series of flat-fan nozzles are used at the engine bell mouth to inject water sprays into the inflowing air. However, optimizing the injector operating conditions is not a straightforward task mainly due to the tradeoff between blade cleaning effectiveness and material erosion. In this context, the knowledge on spray characteristics prior to blade impingement play a vital role, and the experimental spray characterization is crucial not only to understand the basic process but also to validate numerical models and simulations. The present paper investigates spray characteristics in a single flat-fan nozzle operated in the presence of a coflowing air within a wind-tunnel. A parametric investigation is carried out using different air flow velocity in the tunnel and inlet water temperature, while the liquid flow rate was maintained constant. The spray cone angle and liquid breakup length are measured using back-lit photography. The high-speed shadowgraphy technique is used for capturing the droplet images downstream of the injector exit. The images are processed following depth-of-filed correction to measure droplet size distribution. Droplet velocity is measured by the particle tracking velocimetry (PTV) technique. As both droplet size and velocity are known, the cross-stream evolution of local droplet mass and momentum flux are obtained at different axial locations which form the basis for studying the effectiveness of the blade cleaning process due to droplet impingement on a coupon coated with foulant of known mass.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


1991 ◽  
Vol 113 (3) ◽  
pp. 615-619 ◽  
Author(s):  
M. Tanaka

A new method of lubricant feeding is presented for tilting pad journal bearing and its effect on the thermohydrodynamic performance of the bearing is investigated theoretically and experimentally for various operating conditions. The new method can significantly reduce the maximum pad temperature compared with conventional methods, and its effect becomes pronounced with the increase in operating shaft speed. The method is promising for high speed journal pad bearing which is rapidly decreasing a safety margin against seizure due to the dangerously rising maximum pad temperature.


1993 ◽  
Vol 115 (1) ◽  
pp. 88-95 ◽  
Author(s):  
D. C. Sun ◽  
D. E. Brewe ◽  
P. B. Abel

Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurrence and non-occurrence of cavitation. It was found that (1), cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2), for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.


Author(s):  
Maulana Arifin

Microturbine based on a parabolic dish solar concentrator runs at high speed and has large amplitudes of subsynchronous turbo-shaft motion due to the direct normal irradiance (DNI) fluctuation in daily operation. A detailed rotordynamics model coupled to a full fluid film radial or journal bearing model needs to be addressed for increasing performance and to ensure safe operating conditions. The present paper delivers predictions of rotor tip displacement in the microturbine rotor assembly supported by a journal bearing under non-linear vibrations. The rotor assembly operates at 72 krpm on the design speed and delivers a 40 kW power output with the turbine inlet temperature is about 950 °C. The turbo-shaft oil temperature range is between 50 °C to 90 °C. The vibrations on the tip radial compressor and turbine were presented and evaluated in the commercial software GT-Suite environment. The microturbine rotors assembly model shows good results in predicting maximum tip displacement at the rotors with respect to the frequency and time domain.


Author(s):  
Arman Ahamed Subash ◽  
Haisol Kim ◽  
Sven-Inge Möller ◽  
Mattias Richter ◽  
Christian Brackmann ◽  
...  

Abstract Experimental investigations were performed using a standard 3rd generation dry low emission (DLE) burner under atmospheric pressure to study the effect of central and pilot fuel addition, load variations and H2 enrichment in a NG flame. High-speed OH-PLIF and OH-chemiluminescence imaging were employed to investigate the flame stabilization, flame turbulence interactions, and flame dynamics. Along with the optical measurements, combustion emissions were recorded to observe the effect of changing operating conditions on NOX level. The burner is used in Siemens industrial gas turbines SGT-600, SGT-700 and SGT-800 with minor hardware differences. This study thus is a step to characterize fuel and load flexibility for these turbines. Without pilot and central fuel injections in the current burner configuration, the main flame is stabilized creating a central recirculation zone. Addition of the pilot fuel strengthens the outer recirculation zone (ORZ) and moves the flame slightly downstream, whereas the flame moves upstream without affecting the ORZ when central fuel injection is added. The flame was investigated utilizing H2/NG fuel mixtures where the H2 amount was changed from 0 to 100%. The flame becomes more compact, the anchoring position moves closer to the burner exit and the OH signal distribution becomes more distinct for H2 addition due to increased reaction rate, diffusivity, and laminar burning velocity. Changing the load from part to base, similar trends were observed in the flame behavior but in this case due to the higher heat release because of increased turbulence intensity.


Author(s):  
Pradeep Parajuli ◽  
Tyler Paschal ◽  
Mattias A. Turner ◽  
Eric L. Petersen ◽  
Waruna D. Kulatilaka

Abstract Natural gas is a major fuel source for many industrial and power-generation applications. The primary constituent of natural gas is methane (CH4), while smaller quantities of higher order hydrocarbons such as ethane (C2H6) and propane (C3H8) can also be present. Detailed understanding of natural gas combustion is important to obtain the highest possible combustion efficiency with minimal environmental impact in devices such as gas turbines and industrial furnaces. For a better understanding the combustion performance of natural gas, several important parameters to study are the flame temperature, heat release zone, flame front evolution, and laminar flame speed as a function of flame equivalence ratio. Spectrally and temporally resolved, high-speed chemiluminescence imaging can provide direct measurements of some of these parameters under controlled laboratory conditions. A series of experiments were performed on premixed methane/ethane-air flames at different equivalence ratios inside a closed flame speed vessel that allows the direct observation of the spherically expanding flame front. The vessel was filled with the mixtures of CH4 and C2H6 along with respective partial pressures of O2 and N2, to obtain the desired equivalence ratios at 1 atm initial pressure. A high-speed camera coupled with an image intensifier system was used to capture the chemiluminescence emitted by the excited hydroxyl (OH*) and methylidyne (CH*) radicals, which are two of the most important species present in the natural gas flames. The calculated laminar flame speeds for an 80/20 methane/ethane blend based on high-speed chemiluminescence images agreed well with the previously conducted Z-type schlieren imaging-based measurements. A high-pressure test, conducted at 5 atm initial pressure, produced wrinkles in the flame and decreased flame propagation rate. In comparison to the spherically expanding laminar flames, subsequent turbulent flame studies showed the sporadic nature of the flame resulting from multiple flame fronts that were evolved discontinuously and independently with the time. This paper documents some of the first results of quantitative spherical flame speed experiments using high-speed chemiluminescence imaging.


Author(s):  
Alberto Scotti Del Greco ◽  
Tomasz Jurek ◽  
Daniele Di Benedetto ◽  
Vittorio Michelassi ◽  
Giacomo Ragni ◽  
...  

Abstract The demand for gas-turbine (GT) based flexible power generation and mechanical drive is increasing due to the growing penetration of renewables and due to the need to quickly adjust production and operate at part load respectively. As efficiency operability low emissions, small footprint, availability and maintainability are of paramount importance, engine designers are leaning towards aircraft engine architectures that, with appropriate modifications mostly to the combustion system and turbine, can meet market needs. To leverage the large experience from aircraft propulsion, aero-derivative engines maintain the same architecture, with a high-speed shaft core, and a low-speed shaft driven by a multi-stage low-pressure turbine. While in aircraft engines power is adjusted by changing fuel rate and shaft speed, that go hand in hand, mechanical drive engines have more stringent needs that require changing the delivered power by keeping the shaft speed under control to guarantee the operation of the driven equipment (an LNG compressor or an electric generator). Therefore, the power turbine may deliver exit flow profiles and angles that put the turbine exhaust diffuser under severe off-design conditions, with the onset of large scale separations, large kinetic losses, and ultimately a significant drop on cycle performance. This paper describes Baker Hughes, a GE company experience in the CFD assisted design and scale-down testing of aero-derivative exhaust diffusers. The design incorporates the requirements of hot-end mechanical drive in multiple the power turbine operating conditions to determine the best compromise between peak design performance and off-design operability. The test in similitude conditions considered four relevant operating points. The inlet conditions matched with the power turbine exit profiles by the concerted action of swirl vanes and perforated plates, the design of which was heavily CFD assisted. Predictions matched measurements in terms of pressure recovery, kinetic losses, and exhaust velocity profiles. Different data post-processing and averaging were considered to properly factor in the diffuser losses into the overall turbine performance.


Sign in / Sign up

Export Citation Format

Share Document