scholarly journals Approximate Solutions of Three Dimensional Laminar Boundary Layers : A Boundary Layer and Its Separation Produced by a Circular Cylinder Mounted to a Flat Plate

1976 ◽  
Vol 42 (355) ◽  
pp. 765-779
Author(s):  
Hirakazu TORII
2014 ◽  
Vol 756 ◽  
pp. 452-469 ◽  
Author(s):  
Richard E. Hewitt ◽  
Peter W. Duck

AbstractWe investigate three-dimensional (laminar) boundary layers that include a spanwise scale comparable to the boundary-layer thickness. A forcing of short spanwise scales requires viscous dissipation to be retained in the two-dimensional cross-section, perpendicular to the external flow direction, and in this respect the flows are related to previous work on corner boundary layers. We use two examples to highlight the main features of this category of boundary layer: (i) a flat plate of narrow (spanwise) width, and (ii) a narrow (spanwise) gap cut into an otherwise infinite flat plate; in both cases the plate is aligned with a uniform oncoming stream. We find that a novel feature arises in connection with the external flow; the presence of a narrow gap/plate (or indeed any comparable short-scale feature of long streamwise extent) necessarily modifies the streamwise mass flux in that vicinity, which in turn induces an associated boundary-layer transpiration on the same short spanwise length scale. This (short-scale) transpiration region leads to a half-line-source/sink correction to the outer inviscid, irrotational flow. Crucially, the volumetric flux associated with this line-source/sink must be explicitly included as part of the computational procedure for the leading-order boundary layer, and as such there is a weak interaction between the outer (inviscid) flow and the boundary layer. This is a generic feature of boundary layers that are forced through the presence of short-scale spanwise variations.


1974 ◽  
Vol 66 (4) ◽  
pp. 641-655 ◽  
Author(s):  
J. H. Horlock ◽  
A. K. Lewkowicz ◽  
J. Wordsworth

Two attempts were made to develop a three-dimensional laminar boundary layer in the flow over a flat plate in a curved duct, establishing a negligible streamwise pressure gradient and, at the same time, an appreciable crosswise pressure gradient.A first series of measurements was undertaken keeping the free-stream velocity at about 30 ft/s; the boundary layer was expected to be laminar, but appears to have been transitional. As was to be expected, the cross-flow in the boundary layer decreased gradually as the flow became progressively more turbulent.In a second experiment, at a lower free-stream velocity of approximately 10 ft/s, the boundary layer was laminar. Its streamwise profile resembled closely the Blasius form, but the cross-flow near the edge of the boundary layer appears to have exceeded that predicted theoretically. However, there was a substantial experimental scatter in the measurements of the yaw angle, which in laminar boundary layers is difficult to obtain accurately.


1962 ◽  
Vol 13 (3) ◽  
pp. 285-290 ◽  
Author(s):  
R. M. Terrill

SummaryCurie and Skan have modified the approximate methods of Thwaites and Stratford to predict separation properties of laminar boundary layers for flow over an impermeable surface. The work of Curie and Skan has been extended by Curle to include the estimation of laminar skin friction for the whole flow. The purpose of the following note is to compare the approximate methods of Curie and Skan and Curle with the numerical results given by the author for flow past a circular cylinder. It is found that there is remarkable agreement between these approximate methods and the exact numerical solutions. This indicates that these methods can be used widely, both on account of their simplicity and their accuracy.


1982 ◽  
Vol 104 (3) ◽  
pp. 326-333 ◽  
Author(s):  
H. Sakamoto ◽  
M. Moriya ◽  
S. Taniguchi ◽  
M. Arie

Measurements of the pressure distributions on the three-dimensional bluff bodies are correlated with the characteristics of the smooth-wall turbulent boundary layers in which the bodies are immersed. The bluff bodies selected for measurement were a cube and a vertical circular cylinder which can be considered as typical examples of three-dimensional bluff bodies. Experimental data were collected to investigate the effects of (1) the variation of the height of bluff bodies h, (2) the characteristics of the smooth-wall boundary layers in which they are immersed, on the form drag acting on the three-dimensional bluff bodies. For flow with zero-pressure gradient, the form drag coefficients of the cube and the vertical circular cylinder defined by CDτ=D/(1/2ρuτ2h2) are found to be expressed as a power-law function of huτ/ν in the range of h/δ less than about 1.0, where D is the form drag, uτ the shear velocity, ν the kinematic viscosity and δ the thickness of the undisturbed boundary layer at the location of the bluff bodies. For h/δ>1.0, the drag coefficients are independent of the parameter uτ/U0, being uniquely related to h/δ. Further, the pressure distributions along the front centerline of each bluff body can be expressed by a single curve irrespective of both the height of the bluff body and the boundary layer characteristics and show a good agreement with the dynamic pressure in an undisturbed boundary layer at the location of the bluff bodies in the range of about 0.2<y/h<0.7, where y is the distance from the wall.


1997 ◽  
Vol 344 ◽  
pp. 317-334 ◽  
Author(s):  
R. J. LINGWOOD

Swept-wedge flows are used to study the effects of pressure gradient and flow angle on the stability of three-dimensional laminar boundary layers. It is shown that the flow is absolutely unstable in the chordwise direction, i.e. disturbances grow in time at every chordwise location, for certain parameter combinations. However, laminar–turbulent transition may still be a convective process.


New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


1969 ◽  
Vol 91 (3) ◽  
pp. 353-358 ◽  
Author(s):  
W. A. Gustafson ◽  
I. Pelech

The two-dimensional, incompressible laminar boundary layer on a strongly curved wall in a converging channel is investigated for the special case of potential velocity inversely proportional to the distance along the wall. Similarity solutions of the momentum equation are obtained by two different methods and the differences between the methods are discussed. The numerical results show that displacement and momentum thickness increase linearly with curvature while skin friction decreases linearly.


1984 ◽  
Vol 27 (232) ◽  
pp. 2142-2151 ◽  
Author(s):  
Takao KAWAMURA ◽  
Munehiko HIWADA ◽  
Toshiharu HIBINO ◽  
Ikuo MABUCHI ◽  
Masaya KUMADA

1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.


Sign in / Sign up

Export Citation Format

Share Document