scholarly journals A Method to Apply the Reference Stress Approach to Simplified Estimates of Inelastic J-integral Under Displacement-Controlled Loading

2007 ◽  
Vol 73 (735) ◽  
pp. 1259-1265 ◽  
Author(s):  
Terutaka FUJIOKA
Author(s):  
Shinji Yoshida ◽  
Hideo Machida

This paper describes applicability of the 2 parameter assessment method using a reference stress method from the viewpoint of reliability. The applicability of the reference stress method was examined comparing both the GE-EPRI method. As a result, J-integral and limit load at the time of fracture evaluated by the reference stress method is almost equivalent to that by the GE-EPRI method. Furthermore, the partial safety factor (PSF) evaluated by reliability assessment has little difference between two methods, and the required safety factor is enveloped by the safety factor for Service Level-A and B defined in fitness for service (FFS) codes. These results show that of the reference stress method is applicable for J-integral calculation in fracture assessment.


1974 ◽  
Vol 16 (3) ◽  
pp. 125-138 ◽  
Author(s):  
J. Fairbairn

Reference-stress parameters, based on the Norton constitutive equation, are developed for creep bending of circular and elliptical tubes. The parameters are presented in the form of a design chart. The reference stress methods apply also to other simple constitutive equations of the power law, exponential and hyperbolic sine forms, and also to two complex equations describing creep behaviour over the entire range from primary to tertiary. In these equations the functions of stress and time are not separable and reference stress techniques provide a convenient method of evaluating stationary stress distributions and investigating the variation of these stresses with time. Aluminium alloy tubes were creep tested with cyclic uniform bending moments. Creep strains to fracture were measured by an end-rotation method. The creep behaviour of the tubes was well predicted by reference-stress cyclic tensile creep tests.


Author(s):  
Şefika Elvin Eren ◽  
Tyler London ◽  
Yang Yang ◽  
Isabel Hadley

The British Standard, BS 7910 Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures is currently under revision [1]. Major changes have been undertaken, especially in the fracture assessment routes, and this paper specifically addresses the assessment of proximity to plastic collapse, usually expressed as the parameter Lr via either a reference stress or limit load approach. In the new edition of BS 7910, the reference stress approach has been retained for the assessment of many geometries, mainly for reasons of continuity. However, new limit load solutions (originating in the R6 procedure) are given for use in the assessments of strength mismatched structures or clad plates. In general, a reference stress solution and a limit load solution for the same geometry should deliver the same value of Lr. However, recent comparative studies have shown differences in the assessment of plastic collapse depending on whether the reference stress solutions in BS 7910:2013 or the limit load solutions in R6 are used for the calculation of Lr. In this paper, the extent of the difference in the assessment results with respect to the choice of solutions and boundary conditions are discussed. The results of the assessments in accordance with BS 7910 and R6 are compared with the results of numerical assessments obtained via Finite Element Analysis (FEA). The collapse loads observed in various wide plate tests conducted in the last 20 years are also compared with the collapse loads predicted by BS 910:2013, R6 and FEA. Finally, observations regarding the accuracy of different Codes and FEA are discussed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Eduard Marenić ◽  
Ivica Skozrit ◽  
Zdenko Tonković

In the present paper, calculations of the stress intensity factor (SIF) in the linear-elastic range and the J-integral in the elastoplastic domain of cracked structural components are performed by using the shell-to-solid submodeling technique to improve both the computational efficiency and accuracy. In order to validate the submodeling technique, several numerical examples are analyzed. The influence of the choice of the submodel size on the SIF and the J-integral results is investigated. Detailed finite element solutions for elastic and fully plastic J-integral values are obtained for an axially cracked thick-walled pipe under internal pressure. These values are then combined, using the General Electric/Electric Power Research Institute method and the reference stress method, to obtain approximate values of the J-integral at all load levels up to the limit load. The newly developed analytical approximation of the reference pressure for thick-walled pipes with external axial surface cracks is applicable to a wide range of crack dimensions.


Sign in / Sign up

Export Citation Format

Share Document