Reference Stress Based J-Integral Estimates Along the Semi-Elliptical Surface Crack Front

2004 ◽  
Vol 28 (6) ◽  
pp. 701-708
Author(s):  
Greg Thorwald ◽  
Pedro Vargas

The reference stress for axial (longitudinal) surface cracks in cylinders is compared using equations from the 2016 API 579-1/ASME FFS-1 and BS 7910:2013 engineering standards, and by using J-integral values from elastic-plastic Finite Element Analysis of three-dimensional crack meshes to compute crack front reference stress. The cylinder axial surface crack reference stress solutions from the two standards differ, and further examination and comparison is desired. To evaluate if a crack is unstable and may cause catastrophic structural failure, the Failure Assessment Diagram method provides an evaluation using two ratios: brittle fracture and plastic collapse. The FAD vertical axis gives the Kr stress intensity to toughness ratio, and the FAD horizontal axis gives the Lr reference stress to yield strength ratio. The details of the FAD method are described in both standards, along with stress intensity and reference stress solutions for various geometries and crack shapes. Since the cylinder axial surface crack reference stress solutions from API 579 and BS 7910 differ, J-integral values are used to compute reference stress trends that provide additional insight and reveal if there is agreement with one or the other or neither standard. Computing reference stress from crack front J-integral results is described in API 579 Annex 9G Section 9G.4. A 3D crack mesh is created for each crack and cylinder size. Along the crack front the focused mesh pattern uses initially coincident groups of nodes at each crack front position. The group of nodes at each location on the crack front are initially coincident and can separate to help model the blunting at the crack front as the loading increases and local plasticity occurs. Post processing calculations use the J-integral versus load trend and the material specific Kr at Lr = 1 ratio to determine the reference stress geometry factor. The reference stress is computed at each crack front node to find the maximum crack front reference stress value for comparison to the engineering standards’ reference stress solutions. A range of surface crack sizes in thin to thick wall cylinders with internal pressure are used to examine reference stress trends. Standard pipe sizes and typical pipeline steel material is used in the analysis. The difference in reference stress solutions was found during an engineering critical assessment, so the J-integral approach was used to improve the solution to reduce conservatism and allow the component to remain in service.


2011 ◽  
Vol 462-463 ◽  
pp. 651-656 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

An elastic-plastic finite element analysis (FEA) is used to determine the J-integral around the crack front of 3-dimensional semi-elliptical surface crack in a round bar under torsion loading. Crack geometries are based on the experimental observation. The present model is validated using the SIF under bending loading since no suitable SIF for torsion is available. Lack of numerical solution of elastic and plastic stress parameters under torsion are found. The FE J values are normalized by dividing with the estimation J value using a reference stress method. It is found that higher J values are obtained for deep cracks and the maximum J changed from the deepest point along the crack front to the outer point at the free surface when a/D > 0.2. J values can be estimated for all type of crack geometries under consideration with a correction factor, h1.


Author(s):  
Ippei Yamasaki ◽  
Terutaka Fujioka ◽  
Yasuhiro Shindo ◽  
Yusuke Kaneko

This paper describes an experimental validation of the enhanced reference stress method to calculate fatigue J-integral ranges, which are effective in predicting the fatigue crack propagation rate under low–cycle fatigue loadings. Although J-integral type fracture mechanics parameters can be calculated via elastic–plastic finite element analysis (FEA) of the crack geometry, performing such an analysis is costly and requires a high–end computer. A simplified method for estimating the elastic–plastic J-integral is therefore desired. Herein, several representative simplified methods for estimating the elastic–plastic J-integral were applied to crack propagation prediction and compared with each other. The experiments referred to was a previously performed cyclic bending tests using wide–plate specimens containing a semielliptical surface crack. Limit load correction factors to improve the accuracy of the reference stress method were estimated by performing an elastic–plastic FEA. The predicted crack propagation behaviors were compared against the test results.


2021 ◽  
Author(s):  
James C. Sobotka ◽  
Yi-Der Lee ◽  
Joseph W. Cardinal ◽  
R. Craig McClung

Abstract This paper describes a new stress-intensity factor (SIF) solution for an external surface crack in a sphere that expands capabilities previously available for this common pressure vessel geometry. The SIF solution employs the weight function (WF) methodology that enables rapid calculations of SIF values. The WF methodology determines SIF values from the nonlinear stress variations computed for the uncracked geometry, e.g., from service stresses and/or residual stresses. The current approach supports two degrees of freedom that denote the two crack tips located normal to the surface and the surface of the sphere. The geometric formulation of this solution enforces an elliptical crack front, maintains normality of the crack front with the free surface, and supports two degrees of freedom for fatigue crack growth from an internal crack tip and a surface crack tip. The new SIF solution accommodates spherical geometries with an exterior diameter greater than or equal to four times the thickness. This WF SIF solution has been combined with stress variations common for spherical pressure vessels: uniform internal pressure on the interior surface, uniform tension on the crack plane, and uniform bending on the crack plane. This paper provides a complete overview of this solution. We present for the first time the geometric formulation of the crack front that enables the new functionality and set the geometric limits of the solution, e.g., the maximum size and shape of the crack front. The paper discusses the bivariant WF formulation used to define the SIF solution and details the finite element analyses employed to calibrate terms in the WF formulation. A summary of preliminary verification efforts demonstrates the credibility of this solution against independent results from finite element analyses. We also compare results of this new solution against independent SIFs computed by finite element analyses, legacy SIF solutions, API 579, and FITNET. These comparisons indicate that the new WF solution compares favorably with results from finite element analyses. This paper summarizes ongoing efforts to improve and extend this solution, including formal verification and development of an internal surface crack model. Finally, we discuss the capabilities of this solution’s implementation in NASGRO® v10.0.


1997 ◽  
Vol 119 (1) ◽  
pp. 74-82 ◽  
Author(s):  
A. Kiciak ◽  
G. Glinka ◽  
D. J. Burns

Mode I weight functions were derived for the deepest and surface points of an external radial-longitudinal semi-elliptical surface crack in a thick-walled cylinder with the ratio of the internal radius to wall thickness, Ri/t = 1.0. Coefficients of a general weight function were found using the method of two reference stress intensity factors for two independent stress distributions, and from properties of weight functions. Stress intensity factors calculated using the weight functions were compared to the finite element data for several different stress distributions and to the boundary element method results for the Lame´ hoop stress in an internally pressurized cylinder. A comparison to the ASME Pressure Vessel Code method for deriving stress intensity factors was also made. The derived weight functions enable simple calculations of stress intensity factors for complex stress distributions.


Author(s):  
Shinji Yoshida ◽  
Hideo Machida

This paper describes applicability of the 2 parameter assessment method using a reference stress method from the viewpoint of reliability. The applicability of the reference stress method was examined comparing both the GE-EPRI method. As a result, J-integral and limit load at the time of fracture evaluated by the reference stress method is almost equivalent to that by the GE-EPRI method. Furthermore, the partial safety factor (PSF) evaluated by reliability assessment has little difference between two methods, and the required safety factor is enveloped by the safety factor for Service Level-A and B defined in fitness for service (FFS) codes. These results show that of the reference stress method is applicable for J-integral calculation in fracture assessment.


2000 ◽  
Vol 122 (4) ◽  
pp. 225-232 ◽  
Author(s):  
David B. Lanning ◽  
M.-H. Herman Shen

This study investigates the reliability of a plate containing a semi-elliptical surface crack intersecting regions of dissimilar material properties. A weakest-link model is developed to express fracture toughness distributions in terms of effective crack lengths that account for the varying stress intensity factor along the crack front. The model is intended to aid in the development of fracture toughness distributions for cracks encountering local brittle zones (LBZ) in the heat-affected zones (HAZ) of welded joints, where lower-bound fracture toughness values have been measured in the laboratory when a significant portion of the crack front is intersecting the coarse-grained LBZs. An example reliability analysis is presented for a surface crack in a material containing alternating bands of two Weibull-distributed toughnesses. [S0892-7219(00)01203-6]


Sign in / Sign up

Export Citation Format

Share Document