scholarly journals A method for estimating reynolds stress in a two dimensional turbulent boundary layer.

1986 ◽  
Vol 52 (483) ◽  
pp. 3666-3672
Author(s):  
Seizo TSURUNO ◽  
Toshimi YASAKA ◽  
Hiromi TAKASAKI
Author(s):  
Bao-Shi Shiau ◽  
Ben-Jue Tsai

Experimental measurement study on the structure of the Reynolds stress and turbulence spectrum for wind flows over a two-dimensional escarpment with mild upwind slope (slope angle θ = 15°) were performed in the wind tunnel. The Quadrant analysis was applied to analyze the experimental data and yield the structure of the Reynolds stress. In according to the quadrant analysis, the Reynolds stress is composed of four events of the stress components, i.e. outward interaction, ejection (low-speed fluid upward), inward interaction, and sweep (high-speed fluid downward). Measured results show that: (1) Measurements of the structure of the Reynolds stress reveal that both the sweep and ejection events are the major contributors to the Reynolds stress for flow around the two dimensional escarpment with mild upwind slope. (2) The contributions to the Reynolds stress made by ejection events and sweep events are almost the same at heights Z/Zref greater than 0.2 for different downstream distances along the mild slope of escarpment. Here Zref is the turbulent boundary layer thickness. When flow reached the top of the slope of escarpment, stress fractions of ejection event and sweep event, S2 and S4 increased significantly. (3) The he turbulent energy spectrum distribution was not found very dominant spectrum peak as winds flow over the mild upwind slope and top surface of escarpment.


2011 ◽  
Vol 46 (6) ◽  
pp. 917-934 ◽  
Author(s):  
V. Ya. Borovoi ◽  
I. V. Egorov ◽  
A. Yu. Noev ◽  
A. S. Skuratov ◽  
I. V. Struminskaya

1979 ◽  
Vol 94 (2) ◽  
pp. 243-268 ◽  
Author(s):  
A. J. Smits ◽  
J. A. Eaton ◽  
P. Bradshaw

Measurements have been made in the flow over an axisymmetric cylinder-flare body, in which the boundary layer developed in axial flow over a circular cylinder before diverging over a conical flare. The lateral divergence, and the concave curvature in the transition section between the cylinder and the flare, both tend to destabilize the turbulence. Well downstream of the transition section, the changes in turbulence structure are still significant and can be attributed to lateral divergence alone. The results confirm that lateral divergence alters the structural parameters in much the same way as longitudinal curvature, and can be allowed for by similar empirical formulae. The interaction between curvature and divergence effects in the transition section leads to qualitative differences between the behaviour of the present flow, in which the turbulence intensity is increased everywhere, and the results of Smits, Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but no divergence, in which an unexpected collapse of the turbulence occurred downstream of the curved region.


2019 ◽  
Vol 874 ◽  
pp. 720-755 ◽  
Author(s):  
Rishabh Ishar ◽  
Eurika Kaiser ◽  
Marek Morzyński ◽  
Daniel Fernex ◽  
Richard Semaan ◽  
...  

We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.


1971 ◽  
Vol 22 (4) ◽  
pp. 346-362 ◽  
Author(s):  
J. F. Nash ◽  
R. R. Tseng

SummaryThis paper presents the results of some calculations of the incompressible turbulent boundary layer on an infinite yawed wing. A discussion is made of the effects of increasing lift coefficient, and increasing Reynolds number, on the displacement thickness, and on the magnitude and direction of the skin friction. The effects of the state of the boundary layer (laminar or turbulent) along the attachment line are also considered.A study is made to determine whether the behaviour of the boundary layer can adequately be predicted by a two-dimensional calculation. It is concluded that there is no simple way to do this (as is provided, in the laminar case, by the principle of independence). However, with some modification, a two-dimensional calculation can be made to give an acceptable numerical representation of the chordwise components of the flow.


Sign in / Sign up

Export Citation Format

Share Document