Measurement on the Structure of the Reynolds Stress for the Turbulent Boundary Layer Flow Over a Two-Dimensional Escarpment With Mild Upwind Slope

Author(s):  
Bao-Shi Shiau ◽  
Ben-Jue Tsai

Experimental measurement study on the structure of the Reynolds stress and turbulence spectrum for wind flows over a two-dimensional escarpment with mild upwind slope (slope angle θ = 15°) were performed in the wind tunnel. The Quadrant analysis was applied to analyze the experimental data and yield the structure of the Reynolds stress. In according to the quadrant analysis, the Reynolds stress is composed of four events of the stress components, i.e. outward interaction, ejection (low-speed fluid upward), inward interaction, and sweep (high-speed fluid downward). Measured results show that: (1) Measurements of the structure of the Reynolds stress reveal that both the sweep and ejection events are the major contributors to the Reynolds stress for flow around the two dimensional escarpment with mild upwind slope. (2) The contributions to the Reynolds stress made by ejection events and sweep events are almost the same at heights Z/Zref greater than 0.2 for different downstream distances along the mild slope of escarpment. Here Zref is the turbulent boundary layer thickness. When flow reached the top of the slope of escarpment, stress fractions of ejection event and sweep event, S2 and S4 increased significantly. (3) The he turbulent energy spectrum distribution was not found very dominant spectrum peak as winds flow over the mild upwind slope and top surface of escarpment.

1969 ◽  
Vol 37 (1) ◽  
pp. 129-147 ◽  
Author(s):  
T-S. Cham ◽  
M. R. Head

Calculations have been made of the development of the turbulent boundary layer on a disk rotating in free air, using circumferential and radial momentum-integral equations and an auxiliary equation of entrainment. In the calculations, circumferential velocity profiles are represented by Thompson's (1965) two-parameter family, while radial profiles are given by Mager's (1952) quadratic expression. The circumferential component of skin friction follows from the use of Thompson's profile family for the circumferential velocity. The entrainment, in dimensionless form, is assumed to be determined uniquely by the circumferential velocity profile in the same way as was proposed by Head (1958) for a two-dimensional turbulent boundary layer.Detailed measurements have been made of the development of the turbulent boundary layer on the rotating disk, and the calculations are found to be in excellent agreement with the results when a suitable adjustment is made to Head's two-dimensional entrainment curve.


1974 ◽  
Vol 16 (2) ◽  
pp. 71-78 ◽  
Author(s):  
W. K. Allan ◽  
V. Sharma

Experimental data for two-dimensional, low-speed, turbulent boundary layer flow has been used to verify the description of mean-velocity distributions proposed by Allan and to re-evaluate the entrainment function. The independence of pressure gradient and surface roughness as regards their effects on velocity profiles has been demonstrated. Boundary layer predictions agree with experimental data for a smooth surface, but further investigation is required for flow over a rough surface.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1603-1606
Author(s):  
D. C. YAN ◽  
Z. ZHANG ◽  
H. M. SHI ◽  
Z. L. SUN

Systematic experimental researches on reverse transition in the boundary layer on a heated plate are carried out, and the time-series of instantaneous velocity components and temperature fluctuation are measured, then the Reynolds stress, the production term and absorption term of turbulent energy are presented. From the experimental results, the characteristics and physics mechanism of reverse transition as well as statistical properties of turbulence during reversion are revealed.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Daming Liu ◽  
Tianyou Wang ◽  
Ming Jia ◽  
Wei Li ◽  
Zhen Lu ◽  
...  

The turbulent boundary layer flow in internal combustion (IC) engines has a significant effect on the in-cylinder flow and the wall heat transfer. A detailed analysis of the in-cylinder near-wall flow was carried out on an optical steady flow test bench by using high-resolution particle image velocimetry (PIV) in order to characterize the in-cylinder boundary layer flow in this study. The difference between the in-cylinder boundary layer and the canonical turbulent boundary layer was analyzed. The experimental results show that small-scale vortices with a length scale of about 1–2 mm in the instantaneous flow fields appeared in the wall jet region due to the entrainment of the free jet in the outer region of the wall jet. The viscous sublayer thickness decreased from 0.5 mm to 0.3 mm as the valve lift increased from 2.32 mm to 7.975 mm and the pressure drop from 0.5 kPa to 1 kPa. The dimensionless velocity profile is in good agreement with the law of the wall in the viscous sublayer. However, no obvious logarithmic law distribution region was observed in the logarithmic layer. The distribution of the Reynolds stress and the turbulent kinetic energy is similar to that of the canonical turbulent boundary layer. But the Reynolds stress had a much larger magnitude because the turbulent velocity measured in this boundary layer included not only the turbulence generated by wall shear but also the large-scale turbulent vortices caused by the wall jet.


Sign in / Sign up

Export Citation Format

Share Document