scholarly journals Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers. 4th Report. Critical design conditions of steam generators heated by high temperature helium.

1987 ◽  
Vol 53 (495) ◽  
pp. 3403-3408
Author(s):  
Hitoshi MATSUSHIMA ◽  
Wataru NAKAYAMA ◽  
Takehiko YANAGIDA ◽  
Akio KUDO
1982 ◽  
Vol 104 (3) ◽  
pp. 417-425 ◽  
Author(s):  
W. T. Sha ◽  
C. I. Yang ◽  
T. T. Kao ◽  
S. M. Cho

A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid metal services. For the shellside fluid, the conservation equations of mass, momentum and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phased on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG). The analytical model predictions are compared with three sets of test data (one for IHX and two for SG) and favorable results are obtained, thus providing a limited validation of the model.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


Author(s):  
K. Mohammadi ◽  
W. Heidemann ◽  
H. Mu¨ller-Steinhagen

A semi-analytical model is presented for the evaluation of the performance factor of the inlet zone of an E type shell and tube heat exchanger without leakage flows. The performance factor is defined as the ratio of dimensionless heat transfer coefficients and pressure drops of both vertical and horizontal baffle orientation and therefore facilitates the decision between horizontal and vertical baffle orientation of shell and tube heat exchangers. The model allows the calculation of the performance factor of the inlet zone as a function of the baffle cut, the shell-side Reynolds number at the inlet nozzle and the Prandtl number of the shell-side fluid. The application of the model requires the knowledge of the performance factor of water at baffle cut equal to 24% of the shell inside diameter. For the development of the model a numerical data basis is used due to the lack of experimental data for shell and tube heat exchangers with different baffle orientations. The numerical data are obtained from CFD calculations for steady state conditions within a segmentally baffled shell and tube heat exchanger following the TEMA standards. Air, water and engine oil with Prandtl numbers in the range of 0.7 to 206 are used as shell-side fluids. The semi-analytical model introduced for the performance factor predicts the CFD results with a relative absolute error less than 5%. The presented model has to be validated with further experimental data and/or numerical results which explain the effect of baffle orientation on the shell-side heat transfer coefficient and pressure drop in order to check the general applicability.


2012 ◽  
Vol 201-202 ◽  
pp. 107-110
Author(s):  
Xing Cao ◽  
Wen Jing Du ◽  
Lin Cheng

Numerical simulation of shell-and-tube heat exchangers with novel helical baffles was carried out by using commercial codes to study shell-side flow and heat transfer characteristics. The results show that compared with shell-and-tube heat exchangers with conventional helical baffles, the ones with novel helical baffles can efficiently reduce the leakage from triangle zone so that the distributions of both the velocity field and heat transfer on tubes are more uniform. The comparison of comprehensive performance which is evaluated by heat transfer coefficient per unit pressure drop between conventional helical baffles and novel ones indicates that the latter performs better.


2006 ◽  
Vol 129 (9) ◽  
pp. 1277-1285 ◽  
Author(s):  
Qiu-wang Wang ◽  
Gong-nan Xie ◽  
Bo-tao Peng ◽  
Min Zeng

The heat transfer and pressure drop of three types of shell-and-tube heat exchangers, one with conventional segmental baffles and the other two with continuous helical baffles, were experimentally measured with water flowing in the tube side and oil flowing in the shell side. The genetic algorithm has been used to determine the coefficients of correlations. It is shown that under the identical mass flow, a heat exchanger with continuous helical baffles offers higher heat transfer coefficients and pressure drop than that of a heat exchanger with segmental baffles, while the shell structure of the side-in-side-out model offers better performance than that of the middle-in-middle-out model. The predicted heat transfer rates and friction factors by means of the genetic algorithm provide a closer fit to experimental data than those determined by regression analysis. The predicted corrections of heat transfer and flow performance in the shell sides may be used in engineering applications and comprehensive study. It is recommended that the genetic algorithm can be used to handle more complicated problems and to obtain the optimal correlations.


Sign in / Sign up

Export Citation Format

Share Document