scholarly journals The influence of the oblique shock wave on the small signal gain of CO2 GDL employing the wedge nozzle.

1988 ◽  
Vol 54 (505) ◽  
pp. 2441-2445
Author(s):  
Keiichi MITO ◽  
Hideto ADACHI ◽  
Yoshimiti NAKAGAWA ◽  
Hiroshi OHUE
2020 ◽  
Author(s):  
K. Yu. Arefyev ◽  
O. V. Guskov ◽  
A. N. Prokhorov ◽  
A. S. Saveliev ◽  
E. E. Son ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 999-1010 ◽  
Author(s):  
Michele Squartecchia ◽  
Tom K. Johansen ◽  
Jean-Yves Dupuy ◽  
Virginio Midili ◽  
Virginie Nodjiadjim ◽  
...  

AbstractIn this paper, we report the analysis, design, and implementation of stacked transistors for power amplifiers realized on InP Double Heterojunction Bipolar Transistors (DHBTs) technology. A theoretical analysis based on the interstage matching between all the single transistors has been developed starting from the small-signal equivalent circuit. The analysis has been extended by including large-signal effects and layout-related limitations. An evaluation of the maximum number of transistors for positive incremental power and gain is also carried out. To validate the analysis, E-band three- and four-stacked InP DHBT matched power cells have been realized for the first time as monolithic microwave integrated circuits (MMICs). For the three-stacked transistor, a small-signal gain of 8.3 dB, a saturated output power of 15 dBm, and a peak power added efficiency (PAE) of 5.2% have been obtained at 81 GHz. At the same frequency, the four-stacked transistor achieves a small-signal gain of 11.5 dB, a saturated output power of 14.9 dBm and a peak PAE of 3.8%. A four-way combined three-stacked MMIC power amplifier has been implemented as well. It exhibits a linear gain of 8.1 dB, a saturated output power higher than 18 dBm, and a PAE higher than 3% at 84 GHz.


Sign in / Sign up

Export Citation Format

Share Document