scholarly journals Flow Structure behind a Shock Wave Discharged from a Square Cross Section Shock Tube.

1992 ◽  
Vol 58 (549) ◽  
pp. 1413-1418
Author(s):  
Akihisa ABE ◽  
Masato WATANABE ◽  
Kazuyoshi TAKAYAMA
1997 ◽  
Vol 349 ◽  
pp. 67-94 ◽  
Author(s):  
G. JOURDAN ◽  
L. HOUAS ◽  
J.-F. HAAS ◽  
G. BEN-DOR

A simultaneous three-directional laser absorption technique for the study of a shock-induced Richtmyer–Meshkov instability mixing zone is reported. It is an improvement of a CO2 laser absorption technique, using three detectors during the same run, through three different directions of the test section, for the simultaneous thickness measurement of the mixing zone near the corner, near the wall and at the centre of a square-cross-section shock tube. The three-dimensional mean front and rear shapes of the mixing zone, its thickness and volume are deduced from the experimental measurements. The cases when the shock wave passes from a heavy gas to a light one, from one gas to another of similar densities and from a light gas to a heavy one, are investigated before and after the mixing zone compression by the reflected shock, for different incident shock wave Mach numbers. It is shown that the mixing zone is strongly deformed by the wall boundary layer when it becomes turbulent. Consequently, the thickness of the mixing zone is not constant along the shock tube cross-section, and the measurement of the mean volume of the mixing zone appears to be more appropriate than its mean thickness at the centre of the shock tube. The influence of the incident shock wave Mach number is also studied. When the Atwood number tends to zero, we observe a limit-like regime and the thickness, or the volume, of the mixing zone no longer varies with the incident shock wave Mach number. Furthermore, a series of experiments undertaken with an Atwood number close to zero enabled us to define a membrane-induced minimum mixing thickness, L0, depending on the initial configuration of the experiments. From the experimental data, a hypothesis about the mixing zone thickness evolution law with time is deduced on the basis of L0. The results are found to follow two very different laws depending on whether they are considered before or after the establishment of the plenary turbulent regime. However, no general trend can be determined to describe the entire phenomenon, i.e. from the initial conditions until the turbulent stage.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
J. Griffond ◽  
J.-F. Haas ◽  
D. Souffland ◽  
G. Bouzgarrou ◽  
Y. Bury ◽  
...  

Shock-induced mixing experiments have been conducted in a vertical shock tube of 130 mm square cross section located at ISAE. A shock wave traveling at Mach 1.2 in air hits a geometrically disturbed interface separating air and SF6, a gas five times heavier than air, filling a chamber of length L up to the end of the shock tube. Both gases are initially separated by a 0.5 μm thick nitrocellulose membrane maintained parallel to the shock front by two wire grids: an upper one with mesh spacing equal to either ms = 1.8 mm or 12.1 mm, and a lower one with a mesh spacing equal to ml = 1 mm. Weak dependence of the mixing zone growth after reshock (interaction of the mixing zone with the shock wave reflected from the top end of the test chamber) with respect to L and ms is observed despite a clear imprint of the mesh spacing ms in the schlieren images. Numerical simulations representative of these configurations are conducted: the simulations successfully replicate the experimentally observed weak dependence on L, but are unable to show the experimentally observed independence with respect to ms while matching the morphological features of the schlieren pictures.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2021 ◽  
Vol 15 (4) ◽  
pp. 685-690
Author(s):  
S. V. Khomik ◽  
I. V. Guk ◽  
A. N. Ivantsov ◽  
S. P. Medvedev ◽  
E. K. Anderzhanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document