scholarly journals Investigation of the Near-field Structure of Jet Diffusion Flames by the Laser Sheet Method. 2nd Report. Mechanism of Flame Stabilization by Speaker Excitation.

1998 ◽  
Vol 64 (617) ◽  
pp. 283-289 ◽  
Author(s):  
Susumu NODA ◽  
Yasuki KAMITAKAHARA ◽  
Katsuaki ONODERA ◽  
Shigenobu KAMIYA ◽  
Yoshiaki ONUMA
1997 ◽  
Author(s):  
S. Noda ◽  
Y. Kamitakahara ◽  
S. Kamiya ◽  
Y. Onuma ◽  
S. Noda ◽  
...  

Author(s):  
N. Papanikolaou ◽  
I. Wierzba ◽  
V. W. Liu

Abstract The paper will describe the results of an experimental investigation on the effect of diluents premixed with either the jet or co-flowing air stream on the blowout limits and flow field structure of jet diffusion flames. Experiments were conducted for a range of co-flowing air stream velocities with methane as the primary jet fuel, and nitrogen and carbon dioxide as diluents in the jet fuel; carbon dioxide was also used in the co-flowing air stream. The addition of a diluent to the surrounding air stream had a much stronger effect on the blowout limits than the addition of the diluent to the jet fuel. The effect of partially premixing air with the jet fuel on the blowout limits was also investigated. The addition of air (to up to 30%) to the methane jet significantly reduced the blowout limits of lifted flames, but it had little effect on the blowout limits of attached flames, which was rather unexpected.


1997 ◽  
Vol 119 (4) ◽  
pp. 265-270 ◽  
Author(s):  
N. Papanikolaou ◽  
I. Wierzba

The effect of the burner configuration and fuel composition on the stability limits of jet diffusion flames issuing into a co-flowing air stream is presented. Circular and elliptic nozzles of various lip thicknesses and aspect ratios were employed with methane as the primary fuel and hydrogen, carbon dioxide, and nitrogen as additives. It was found that the effects of nozzle geometry, fuel composition, and co-flowing stream velocity on the blowout limits were highly dependent on the type of flame stabilization mechanism, i.e., whether lifted or rim-attached, just prior to blowout. The blowout behavior of lifted flames did not appear to be significantly affected by a change in the nozzle shape as long as the discharge area remained constant, but it was greatly affected by the fuel composition. In contrast, attached flame stability was influenced by both the fuel composition and the nozzle geometry which had the potential to extend the maximum co-flowing stream velocity without causing the flame to blow out. The parameters affecting the limiting stream velocity were studied.


1996 ◽  
Vol 118 (2) ◽  
pp. 134-139 ◽  
Author(s):  
N. Papanikolaou ◽  
I. Wierzba

The effects of changes in the jet nozzle geometry, i.e., nozzle shape and lip thickness, on the blowout limits of jet diffusion flames in a co-flowing air stream were experimentally investigated for a range of co-flow air stream velocities. Circular and elongated nozzles of different axes rations were employed. Preliminary results showed that nozzles with low major-to-minor axes ratios improved, while high ratios reduced, the blowout limit of attached flames compared with that for an equivalent circular nozzle. The nozzle shape had no apparent influence on the blowout limits lifted flames and the limiting stream velocity. The experimental blowout limits of lifted flames were found to be a function of the co-flowing stream velocity and jet discharge area. On the other hand, the stability of attached flames was a function of the co-flowing stream velocity, jet discharge area as well as the nozzle shape. The effect of premixing a fuel with the surrounding air was also studied. Generally, the introduction of auxiliary fuel into the surrounding stream either increased or decreased the blowout limit depending on the type of flame stabilization mechanism prior to blowout. The stability mechanism of the flame was found to be a function of the co-flow stream velocity and the auxiliary fuel employed.


Sign in / Sign up

Export Citation Format

Share Document