scholarly journals Streamwise Vortices in a Turbulent Boundary Layer through Gaps between Roughness Elements. Evaluation of Production Terms in the Vorticity Transport Equation.

1999 ◽  
Vol 65 (635) ◽  
pp. 2349-2357
Author(s):  
Shinsuke MOCHIZUKI ◽  
Hiroaki OZAKI ◽  
Hideo OSAKA
1996 ◽  
Vol 326 ◽  
pp. 151-179 ◽  
Author(s):  
Junhui Liu ◽  
Ugo Piomelli ◽  
Philippe R. Spalart

The interaction between a zero-pressure-gradient turbulent boundary layer and a pair of strong, common-flow-down, streamwise vortices with a sizeable velocity deficit is studied by large-eddy simulation. The subgrid-scale stresses are modelled by a localized dynamic eddy-viscosity model. The results agree well with experimental data. The vortices drastically distort the boundary layer, and produce large spanwise variations of the skin friction. The Reynolds stresses are highly three-dimensional. High levels of kinetic energy are found both in the upwash region and in the vortex core. The two secondary shear stresses are significant in the vortex region, with magnitudes comparable to the primary one. Turbulent transport from the immediate upwash region is partly responsible for the high levels of turbulent kinetic energy in the vortex core; its effect on the primary stress 〈u′v′〉 is less significant. The mean velocity gradients play an important role in the generation of 〈u′v′〉 in all regions, while they are negligible in the generation of turbulent kinetic energy in the vortex core. The pressure-strain correlations are generally of opposite sign to the production terms except in the vortex core, where they have the same sign as the production term in the budget of 〈u′v′〉. The results highlight the limitations of the eddy-viscosity assumption (in a Reynolds-averaged context) for flows of this type, as well as the excessive diffusion predicted by typical turbulence models.


2017 ◽  
Vol 100 (2) ◽  
pp. 391-416 ◽  
Author(s):  
H. L. Bai ◽  
Y. Zhou ◽  
W. G. Zhang ◽  
R. A. Antonia

2016 ◽  
Vol 795 ◽  
pp. 611-633 ◽  
Author(s):  
Y. Jodai ◽  
G. E. Elsinga

Time-resolved tomographic particle image velocimetry experiments show that new hairpin vortices are generated within a fully developed and unperturbed turbulent boundary layer. The measurements are taken at a Reynolds number based on the momentum thickness of 2038, and cover the near-wall region below $y^{+}=140$, where $y^{+}$ is the wall-normal distance in wall units. Instantaneous visualizations of the flow reveal near-wall low-speed streaks with associated quasi-streamwise vortices, retrograde inverted arch vortices, hairpin vortices and hairpin packets. The hairpin heads are observed as close to the wall as $y^{+}=30$. Examples of hairpin packet evolution reveal the development of new hairpin vortices, which are created upstream and close to the wall in a manner consistent with the auto-generation model (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). The development of the new hairpin appears to be initiated by an approaching sweep event, which perturbs the shear layer associated with the initial packet. The shear layer rolls up, thereby forming the new hairpin head. The head subsequently connects to existing streamwise vortices and develops into a hairpin. The time scale associated with the hairpin auto-generation is 20–30 wall units of time. This demonstrates that hairpins can be created over short distances within a developed turbulent boundary layer, implying that they are not simply remnants of the laminar-to-turbulent transition process far upstream.


2011 ◽  
Vol 683 ◽  
pp. 172-211 ◽  
Author(s):  
S. Lardeau ◽  
M. A. Leschziner

AbstractA computational large eddy simulation (LES) study is presented of the interaction between a turbulent boundary layer separating from a rounded ramp in a duct and a pair of spanwise-periodic, round synthetic jets, actuated upstream of the nominal separation line. Several scenarios are considered, for different injection angles and velocity ratios. In all cases, the actuation frequency corresponds to the shedding-instability mode of the separated shear layer. Experimental data, available for both the baseline flow and one actuated configuration, are used to verify the validity of the computational solutions. The analysis includes a separation of coherent and stochastic contributions to the time-averaged statistics of the auto- and cross-correlations of the fluctuations. The control authority is examined by reference to the effects of the actuation on the size of the separated zone, the momentum thickness of the boundary layer, the velocity field, various turbulence quantities and phase-averaged properties. The study demonstrates that the principal aspect of the interaction, at mean-flow level, is an increase in mixing provoked by the formation of strong streamwise vortices away from the wall, the induction of much weaker streamwise vortices close to the wall, and the extra production of stochastic turbulence caused by unsteady straining. The coherent stresses arising from the periodic perturbations are high – typically 5 times the levels of the unperturbed flow – but only within about 5–7 diameters of the jet orifice, and 2 orifice diameters on each side of the jet, and these are dominant primarily in the outer parts of the boundary layer. Stochastic turbulence is also elevated, but more modestly. The global effect of the actuation is a reduction of 10–20 % in the length of the separated region and 20–40 % in the thickness of the reverse-flow layer, depending on the actuation scheme, counter-flow actuation being the most effective. This reduction is mainly associated with a delay in separation. These results highlight the need for synthetic jets to be placed close to the separation zone and for the inter-jet distance to be of order 5 or lower to achieve a high level of separation-control authority.


2022 ◽  
Vol 933 ◽  
Author(s):  
Kristofer M. Womack ◽  
Ralph J. Volino ◽  
Charles Meneveau ◽  
Michael P. Schultz

Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events.


Sign in / Sign up

Export Citation Format

Share Document