scholarly journals Numerical Study of Conjugate Heat Transfer in a System Consisting of Porous Media and Bounding Walls.

2003 ◽  
Vol 69 (679) ◽  
pp. 674-681 ◽  
Author(s):  
Yutaka ODA ◽  
Hiroshi IWAI ◽  
Kenjiro Suzuki ◽  
Hideo YOSHIDA
Author(s):  
Y.-H. Ho ◽  
M. M. Athavale ◽  
J. M. Forry ◽  
R. C. Hendricks ◽  
B. M. Steinetz

A numerical study of the flow and heat transfer in secondary flow elements of the entire inner portion of the turbine section of the Allison T-56/501D engine is presented. The flow simulation included the interstage cavities, rim seals and associated main path flows, while the energy equation also included the solid parts of the turbine disc, rotor supports, and stator supports. Solutions of the energy equations in these problems usually face the difficulty in specifications of wall thermal boundary conditions. By solving the entire turbine section this difficulty is thus removed, and realistic thermal conditions are realized on all internal walls. The simulation was performed using SCISEAL, an advanced 2D/3D CFD code for predictions of fluid flows and forces in turbomachinery seals and secondary flow elements. The mass flow rates and gas temperatures at various seal locations were compared with the design data from Allison. Computed gas flow rates and temperatures in the rim and labyrinth seal show a fair 10 good comparison with the design calculations. The conjugate heat transfer analysis indicates temperature gradients in the stationary intercavity walls, as well as the rotating turbine discs. The thermal strains in the stationary wall may lead to altered interstage labyrinth seal clearances and affect the disc cavity flows. The temperature, fields in the turbine discs also may lead to distortions that can alter the rim seal clearances. Such details of the flow and temperature fields are important in designs of the turbine sections to account for possible thermal distortions and their effects on the performance. The simulation shows that the present day CFD codes can provide the means to understand the complex flow field and thereby aid the design process.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 467-475 ◽  
Author(s):  
Habib-Olah Sayehvand ◽  
Sakene Yari ◽  
Parsa Basiri

Staggered arrangement is one of the common configurations in heat exchangers that make better mixing of flow and heat transfer augmentation than other arrangements. In this paper forced convection heat transfer over three isothermal circular cylinders in staggered configuration in isotropic packed bed was investigated. In this work laminar 2-D incompressible steady-state equations of momentum and energy were solved numerically by finite volume method. Simulation was done in three Reynolds numbers of 80, 120, and 200. The results indicate that, using porous medium the Nusselt number enhanced considerably for any of cylinders and it presents thin temperature contours for them. Also is shown that by increasing Reynolds number, the heat transfer increased in both channel but the growth rate of it in porous media is larger. In addition, results of simulation in porous channel show that with increasing Peclet number, heat transfer increased logarithmically.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Orkodip Mookherjee ◽  
Shantanu Pramanik

Abstract A numerical study of magneto-hydrodynamic mixed convection in a cavity has been conducted to investigate the influence of magnetic field on integrated flux of thermal energy, linear momentum, and kinetic energy. Shear force through lid motion establishes the forced convection effect and buoyancy force due to differential heating of the moving lid and the stationary interface ensures the natural convection phenomenon. Additionally, conduction through the solid slab with prescribed temperature at the outer surface attached to the cavity induces conjugate heat transfer. Further, the top and bottom walls throughout the domain are kept insulated and a uniform horizontal magnetic field is applied on the interface toward left. Fluid flow and heat transfer characteristics are examined for a range of Hartmann number (Ha): 0, 10, 50, and 120 at fixed values of Reynolds number, Grashof number, and Prandtl number of 300, 9 × 104 and 0.71, respectively. The result shows that the transport of heat in the near wall regions of the fluid domain is primarily governed by diffusion, whereas advection appears stronger in the central region of the cavity. Increase in magnetic field strength from Ha = 0 to 120 gradually suppresses the recirculating structure of the flow signifying a reduction in advective strength as depicted by the decrease in the value of total integrated heat flux from 25.15×10-3 to 6.0×10-3. The reduction in heat flux, momentum fluxes, and kinetic energy fluxes with increase in magnetic field has been well correlated in the range of 0≤Ha≤120.


2020 ◽  
Vol 156 ◽  
pp. 106458 ◽  
Author(s):  
R. Alvarado-Juárez ◽  
M. Montiel-González ◽  
H.I. Villafán-Vidales ◽  
C.A. Estrada ◽  
J. Flores-Navarrete

Sign in / Sign up

Export Citation Format

Share Document