scholarly journals Modeling of Solid Oxide Fuel Cell Anode Using Stochastic Reconsutruction and Lattice Boltzmann Method

2007 ◽  
Vol 73 (736) ◽  
pp. 2557-2564
Author(s):  
Yoshinori SUZUE ◽  
Naoki SHIKAZONO ◽  
Nobuhide KASAGI
Author(s):  
Abhijit S. Joshi ◽  
Kyle N. Grew ◽  
Aldo A. Peracchio ◽  
Wilson K. S. Chiu

At the length scales and temperatures present in a typical SOFC, both continuum and non-continuum transport of fuel and product species are important. Fuel and product transport through a representative, microscopic, two-dimensional (2D) channel present in the porous anode of a solid oxide fuel cell (SOFC) is examined. Non-continuum transport, which can be broken down into the slip, transition and free molecular regimes, is modeled for a ternary system (H2, H2O, and N2) using the Stefan-Maxwell (SM) model, the Dusty-Gas (DG) model and the lattice Boltzmann method (LBM). Results obtained show that the LBM can provide a suitable framework for continuum as well as non-continuum transport in a SOFC up to the transition regime. LBM can also handle complex porous geometries, which are currently intractable by other modeling approaches, e.g. SM and DG. However, further work is required to extend the range of application of the present LBM to the free-molecular flow regime.


Author(s):  
Abhijit S. Joshi ◽  
Kyle N. Grew ◽  
John R. Izzo ◽  
Aldo A. Peracchio ◽  
Wilson K. S. Chiu

The lattice Boltzmann method (LBM) was used to study the three-dimensional (3D) mass diffusion of three species (H2, H2O, and N2) in the pore phase of a porous solid oxide fuel cell (SOFC) anode. The method used is an extension of a two-dimensional (2D) LBM model (2007, “Lattice Boltzmann Method for Continuum, Multi-Component Mass Diffusion in Complex 2D Geometries,” J. Phys. D, 40, pp. 2961–2971) to study mass transport in SOFC anodes (2007, “Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode,” J. Power Sources, 164, pp. 631–638). The 3D porous anode geometry is initially modeled using a set of randomly packed and overlapping solid spheres. Results using this simple geometry model are then compared with results for an actual SOFC anode geometry obtained using X-ray computed tomography (XCT) at sub-50 nm resolution. The effective diffusivity Deff of the porous anode is a parameter, which is widely used in system-level models. However, empirical relationships often used to calculate this value may not be accurate for the porous geometry that is actually used. Solution of the 3D Laplace equation provides a more reliable and accurate means to estimate the effective diffusivity for a given anode geometry. The effective diffusivity is calculated for different geometries and for a range of porosity values, both for the 3D sphere packing model and for the real geometry obtained by XCT. The LBM model is then used to predict species mole fractions within the spherical packing model geometry and the XCT geometry. The mole fraction variation is subsequently used to calculate the concentration polarization. These predictions compare well with previously obtained 2D results and with results reported in the literature. The 3D mass transport model developed in this work can be eventually coupled with other transport models and be used to optimize the anode microstructure geometry.


2007 ◽  
Vol 164 (2) ◽  
pp. 631-638 ◽  
Author(s):  
Abhijit S. Joshi ◽  
Kyle N. Grew ◽  
Aldo A. Peracchio ◽  
Wilson K.S. Chiu

2015 ◽  
Vol 30 (12) ◽  
pp. 1291
Author(s):  
ZHANG Yu-Yue ◽  
LIN Jie ◽  
MIAO Guo-Shuan ◽  
GAO Jian-Feng ◽  
CHEN Chu-Sheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document