scholarly journals Effect of Engine Operating Conditions on Nanostructure and Oxidation Reactivity of Soot Particles from Diesel Engine

2013 ◽  
Vol 79 (806) ◽  
pp. 2228-2238 ◽  
Author(s):  
Kazuhiro HAYASHIDA ◽  
Masayuki UNO ◽  
Hiromi ISHITANI
Author(s):  
N Sung ◽  
S Lee ◽  
H Kim ◽  
B Kim

A numerical cycle model is developed to investigate the soot production in a direct injection (DI) diesel engine. The Surovikin and Fusco models for soot formation and the Nagle model for soot oxidation are used with the KIVA-3V code. In the Surovikin model, carbon radicals are produced from pyrolysis of fuel and soot particles grow through collisions with fuel molecules. In the Fusco model, the carbon radicals and acetylene are formed from pyrolysis of fuel. There, acetylene works for the growth of soot particles. From investigation of the e. ects of the operating conditions on soot formation and oxidation, it is found that soot formation is mainly governed by fuel concentration and combustion temperature and soot oxidation is more dependent on combustion temperature. The air-fuel ratio a. ects soot formation more than injection timing. For a stoichiometric mixture ratio, soot formation is increased because of the high combustion temperature.


2012 ◽  
Author(s):  
Wan Mohd Faizal Wan Mahmood ◽  
Antonino LaRocca ◽  
Paul J. Shayler ◽  
Fabrizio Bonatesta ◽  
Ian Pegg

Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2022 ◽  
Vol 237 ◽  
pp. 111854
Author(s):  
Xingyu Liang ◽  
Bowen Zhao ◽  
Kun Wang ◽  
Xu Lv ◽  
Yajun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document