scholarly journals Uniform flow distribution to stacked parallel disk channels in a disk shape small-capacity SOFC stack model

Author(s):  
Kazumi TSUNODA ◽  
Koichi TAKEYAMA ◽  
Tsuyoshi OISHI
2019 ◽  
Vol 33 (8) ◽  
pp. 3859-3864 ◽  
Author(s):  
Jungchul Kim ◽  
Jeong Heon Shin ◽  
Sangho Sohn ◽  
Seok Ho Yoon

2012 ◽  
Vol 155-156 ◽  
pp. 1015-1019
Author(s):  
Yi Shu Hao ◽  
Kai Shun Ji ◽  
Zong Yue Liu

This paper focuses on the issues of uniform flow distribution control for sewage treatment devices. A novel method for uniform flow distribution was proposed, in which a new type sewage distributor employing two phrase stepper motors is integrated to replace the conventional one. The model of permanent magnet stepper motor is mainly discussed. A proportional-integral-derivative (PID) controller is designed for this new type distributor. The performance of general controlled system is simulated, compared by tuning the parameters. And the control system is evaluated in practical use.


Author(s):  
Akhilesh V. Bapat ◽  
Satish G. Kandlikar

The continuum assumption has been widely accepted for single phase liquid flows in microchannels. There are however a number of publications which indicate considerable deviation in thermal and hydrodynamic performance during laminar flow in microchannels. In the present work, experiments have been performed on six parallel microchannels with varying cross-sectional dimensions. A careful assessment of friction factor and heat transfer in is carried out by properly accounting for flow area variations and the accompanying non-uniform flow distribution in individual channels. These factors seem to be responsible for the discrepancy in predicting friction factor and heat transfer using conventional theory.


Sign in / Sign up

Export Citation Format

Share Document