parallel microchannels
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 32)

H-INDEX

20
(FIVE YEARS 5)

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6641
Author(s):  
Konstantinos Vontas ◽  
Manolia Andredaki ◽  
Anastasios Georgoulas ◽  
Nicolas Miché ◽  
Marco Marengo

Phase change heat transfer within microchannels is considered one of the most promising cooling methods for the efficient cooling of high-performance electronic devices. However, there are still fundamental parameters, such as the effect of channel hydraulic diameter Dh, whose effects on fluid flow and heat transfer characteristics are not clearly defined yet. The objective of the present work is to numerically investigate the first transient flow boiling characteristics from the bubble inception up to the first stages of the flow boiling regime development, in rectangular microchannels of varying hydraulic diameters, utilising an enhanced custom VOF-based solver. The solver accounts for conjugate heat transfer effects, implemented in OpenFOAM and validated in the literature through experimental results and analytical solutions. The numerical study was conducted through two different sets of simulations. In the first set, flow boiling characteristics in four single microchannels of Dh = 50, 100, 150, and 200 μm with constant channel aspect ratio of 0.5 and length of 2.4 mm were examined. Due to the different Dh, the applied heat and mass flux values varied between 20 to 200 kW/m2 and 150 to 2400 kg/m2s, respectively. The results of the two-phase simulations were compared with the corresponding initial single-phase stage of the simulations, and an increase of up to 37.4% on the global Nu number Nuglob  was revealed. In the second set of simulations, the effectiveness of having microchannel evaporators of single versus multiple parallel microchannels was investigated by performing and comparing simulations of a single rectangular microchannel with Dh of 200 μm and four-parallel rectangular microchannels, each having a hydraulic diameter Dh of 50 μm. By comparing the local time-averaged thermal resistance along the channels, it is found that the parallel microchannels configuration resulted in a 23.3% decrease in the average thermal resistance R¯l compared to the corresponding single-phase simulation stage, while the flow boiling process reduced the R¯l by only 5.4% for the single microchannel case. As for the developed flow regimes, churn and slug flow dominated, whereas liquid film evaporation and, for some cases, contact line evaporation were the main contributing flow boiling mechanisms.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3294
Author(s):  
Yi-Jung Lu ◽  
Han-Yun Hsieh ◽  
Wen-Chang Kuo ◽  
Pei-Kuen Wei ◽  
Horn-Jiunn Sheen ◽  
...  

In this study, a multiplex detection system was proposed by integrating a localized surface plasmon resonance (LSPR) sensing array and parallel microfluidic channels. The LSPR sensing array was fabricated by nanoimprinting and gold sputter on a polycarbonate (PC) substrate. The polydimethylsiloxane (PDMS) microfluidic channels and PC LSPR sensing array were bound together through (3-aminopropyl)triethoxysilane (APTES) surface treatment and oxygen plasma treatment. The resonant spectrum of the LSPR sensing device was obtained by broadband white-light illumination and polarized wavelength measurements with a spectrometer. The sensitivity of the LSPR sensing device was measured using various ratios of glycerol to water solutions with different refractive indices. Multiplex detection was demonstrated using human immunoglobulin G (IgG), IgA, and IgM. The anti-IgG, anti-IgA, and anti-IgM were separately modified in each sensing region. Various concentrations of human IgG, IgA, and IgM were prepared to prove the concept that the parallel sensing device can be used to detect different targets.


Author(s):  
Ankur Miglani ◽  
Anali Soto ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

Abstract As the size, weight, and performance requirements of electronic devices grow increasingly demanding, their packaging has become more compact. As a result of thinning or removing the intermediate heat spreading layers, non-uniform heat generation from the chip-scale and component-level variations may be imposed directly on the attached microchannel heat sink. Despite the important heat transfer performance implications, the effect of uneven heating on the flow distribution in parallel microchannels undergoing boiling has been largely unexplored. In this study, a two-phase flow distribution model is used to investigate the impact of uneven heating on the flow distribution behavior of parallel microchannels undergoing boiling. Under lateral uneven heating (i.e., the channels are each heated to different levels, but the power input is uniform along the length of any given channel), it is found that the flow is significantly more maldistributed compared to the even heating condition. Specifically, the range of total flow rates over which the flow is maldistributed is broader and the maximum severity of flow maldistribution is higher. These trends are assessed as a function of the total input power, degree of uneven heating, and the extent of thermal connectedness between the channels. These model predictions are validated against experiments for a representative case of thermally isolated channels subjected to even heating and extreme lateral uneven heating conditions and show excellent agreement.


Author(s):  
Lindsey V. Randle ◽  
Brian M. Fronk

Abstract In this study, we use infrared thermography to calculate local heat transfer coefficients of top and bottom heated flows of near-critical carbon dioxide in an array of parallel microchannels. These data are used to evaluate the relative importance of buoyancy for different flow arrangements. A Joule heated thin wall made of Inconel 718 applies a uniform heat flux either above or below the horizontal flow. A Torlon PAI test section consists of three parallel microchannels with a hydraulic diameter of 923 μm. The reduced inlet temperature (TR = 1.006) and reduced pressure (PR = 1.03) are held constant. For each heater orientation, the mass flux (520 kgm−2s−2 ≤ G ≤ 800 kgm−2s−2) and heat flux (4.7 Wcm−2 ≤ q″ ≤ 11.1 Wcm−2) are varied. A 2D resistance network analysis method calculates the bulk temperatures and heat transfer coefficients. In this analysis, we divide the test section into approximately 250 segments along the stream-wise direction. We then calculate the bulk temperatures using the enthalpy from the upstream segment, the heat flux in a segment, and the pressure. To isolate the effect of buoyancy, we screen the data to omit conditions where flow acceleration may be important or where relaminarization may occur. In the developed region of the channel, there was a 10 to 15 percent reduction of the local heat transfer coefficients for the upward heating mode compared to downward heating with the same mass and heat fluxes. Thus buoyancy effects should be considered when developing correlations for these types of flow.


2021 ◽  
Vol 230 ◽  
pp. 116166
Author(s):  
He Wang ◽  
Qiuying Shen ◽  
Chunying Zhu ◽  
Youguang Ma ◽  
Taotao Fu

2021 ◽  
Vol 321 ◽  
pp. 02006
Author(s):  
Jerry Czarnecki ◽  
Romuald Mosdorf ◽  
Hubert Grzybowski ◽  
Paweł Dzienis

Pressure and mass flow fluctuations in a system consisting of a microchannel two-phase heat exchanger with wire mesh covering and overflow chamber were modelled by employing mass, momentum, and energy balances on the fluid in mesh volume. These fluctuations are a result of the alternate wetting and drying of the mesh membrane driven by a combination of evaporation and capillary pressure-driven flow into the mesh. Experiments using a system of eleven parallel microchannels, each of dimension 32 x 0.25 x 0.5 mm, slotted into a copper substrate and covered with a stainless steel mesh of 0.025 mm wire and 0.026 mm aperture, confirm the occurrence of these high frequency pressure and mass flow fluctuations. The use of non-linear methods that included attractor reconstruction and recurrence plotting to enhance predictive capabilities is also explored.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5886
Author(s):  
Linbo Liu ◽  
Guangming Li ◽  
Nan Xiang ◽  
Xing Huang ◽  
Kota Shiba

Microfabrication technologies have extensively advanced over the past decades, realizing a variety of well-designed compact devices for material synthesis, separation, analysis, monitoring, sensing, and so on. The performance of such devices has been undoubtedly improved, while it is still challenging to build up a platform by rationally combining multiple processes toward practical demands which become more diverse and complicated. Here, we present a simple and effective microfluidic system to produce and immobilize a well-defined functional material for on-chip permanganate (MnO4−) sensing. A droplet-based microfluidic approach that can continuously produce monodispersed droplets in a water-in-oil system is employed to prepare highly uniform microspheres (average size: 102 μm, coefficient of variation: 3.7%) composed of bovine serum albumin (BSA) hydrogel with autofluorescence properties in the presence of glutaraldehyde (GA). Each BSA hydrogel microsphere is subsequently immobilized in a microchannel with a hydrodynamic trapping structure to serve as an independent fluorescence unit. Various anions such as Cl−, NO3−, PO43−, Br−, BrO3−, ClO4−, SCN−, HCO3−, and MnO4− are individually flowed into the microchannel, resulting in significant fluorescence quenching only in the case of MnO4−. Linear correlation is confirmed at an MnO4− concentration from 20 to 80 μM, and a limit of detection is estimated to be 1.7 μM. Furthermore, we demonstrate the simultaneous immobilization of two kinds of different microspheres in parallel microchannels, pure BSA hydrogel microspheres and BSA hydrogel microspheres containing rhodamine B molecules, making it possible to acquire two fluorescence signals (green and yellow). The present microfluidics-based combined approach will be useful to record a fingerprint of complicated samples for sensing/identification purposes by flexibly designing the size and composition of the BSA hydrogel microspheres, immobilizing them in a desired manner and obtaining a specific pattern.


Sign in / Sign up

Export Citation Format

Share Document