Sustainable Yield Index: An Approach to Evaluate the Sustainability of Long-Term Intensive Cropping Systems in India

2004 ◽  
Vol 24 (4) ◽  
pp. 39-56 ◽  
Author(s):  
R. H. Wanjari ◽  
M. V. Singh ◽  
P. K. Ghosh
2006 ◽  
Vol 144 (3) ◽  
pp. 249-259 ◽  
Author(s):  
P. K. GHOSH ◽  
M. C. MANNA ◽  
D. DAYAL ◽  
R. H. WANJARI

Soil organic carbon storage encompasses both soil productivity and environmental capabilities. The influence of fertilizer (nitrogen and phosphorus) levels (0 NP, 0·5 NP, 1·0 NP (recommended standard) or 1·5 NP) on total system productivity, sustainable yield index and soil organic carbon storage in Vertisols (Typic Haplustert) under groundnut and fallow-based cropping systems were examined in a field experiment over 6 years. The aim was to identify a system that provided an acceptable balance between total system productivity and soil organic carbon restoration. The experiment comprised two rainy season crops (groundnut or fallow) and five post-rainy season crops (wheat, mustard, chickpea, sunflower or summer groundnut), each post-rainy season crop with four levels of NP fertilizer. The total system productivity was 130% higher in the groundnut-based than in the fallow-based system and was in the order: groundnut–groundnut>groundnut–chickpea>groundnut–wheat>groundnut–mustard>groundnut–sunflower. The sustainable yield index was highest in the groundnut–groundnut system. The gross C input was relatively higher in the groundnut-based system but the C loss rate was greater. The amount of residue needed per ha per year to compensate for loss of soil organic carbon was estimated to be 4·3 t in the fallow-based and 7·6 t in the groundnut–based cropping system. Though the total system productivity was greater in groundnut–groundnut and groundnut–chickpea systems, soil organic carbon declined. The groundnut–wheat system contributed more C, particularly root biomass C, than other systems, improved the restoration of soil organic carbon and maintained total system productivity. It was concluded that current fertilizer recommendations are adequate for maintaining yields in groundnut-based systems but the addition of crop residues at regular intervals along with fertilizer is necessary to maintain restoration of soil organic carbon.


Author(s):  
Gabu Singh Gathiye ◽  
Hari Shankar Kushwaha

Background: Large area under soybean is spread over Central India. Due to short growing season, soybean fits well in a number of cropping systems and is well suited for intercropping with a number of crops resulting in better land equivalent ratio and helps in the risk aversion due to climatic uncertainties in rainfed conditions. It has increased more cropping intensity and B;C ratio (profitability). All domestic demands of the farmers pertaining to agricultural produce could not be possible to fulfill by growing crops in existing soybean-wheat/gram cropping systems. Methods: A field trial was conducted during rainy, winter and late winter seasons of the year 2015-16 and 2016-17 at the research farm of Krishi Vigyan Kendra, Dhar, M.P. to assess comparative studies of soybean (Glycine max L.) based cropping systems for sustainable production in Malwa Plateau of Central India. There were altogether16 treatments comprising of soybean sequenced with wheat, chick pea, garlic, onion, potato and garden pea with inclusion of garlic, onion in late winter and assessed in randomized block design with four replications. Result: Soybean (JS 93-05) - potato (Kufri jyoti) - onion (AFLR) cropping sequence recorded the highest system productivity 177.31 q/ha) in terms of soybean equivalent yield with greater production efficiency (56.55 kg/ha/day), land use efficiency (85.89%) and sustainable yield index (0.91) while existing crop sequence viz. T3- soybean (JS 95-60) - chickpea (JG-130) recorded minimum soybean equivalent yield (42.79 q/ha) with production efficiency (22.93 kg/ha/day), use efficiency of land (56.30%) and sustainable yield index (0.50).


2003 ◽  
Vol 67 (2) ◽  
pp. 637 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


2003 ◽  
Vol 67 (2) ◽  
pp. 637-644 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

2012 ◽  
Vol 39 ◽  
pp. 52-61 ◽  
Author(s):  
Federica Graziani ◽  
Andrea Onofri ◽  
Euro Pannacci ◽  
Francesco Tei ◽  
Marcello Guiducci
Keyword(s):  

2007 ◽  
Vol 99 (5) ◽  
pp. 1297-1305 ◽  
Author(s):  
John R. Teasdale ◽  
Charles B. Coffman ◽  
Ruth W. Mangum

2015 ◽  
Vol 146 ◽  
pp. 213-222 ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Josiléia Accordi Zanatta ◽  
Frederico Costa Beber Vieira ◽  
Marisa de Cássia Piccolo ◽  
...  

2009 ◽  
Vol 44 (8) ◽  
pp. 949-953 ◽  
Author(s):  
Cécile Villenave ◽  
Bodovololona Rabary ◽  
Jean-Luc Chotte ◽  
Eric Blanchart ◽  
Djibril Djigal

The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.


Sign in / Sign up

Export Citation Format

Share Document