The general $\phi$-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations

2017 ◽  
Vol 32 ◽  
pp. 475-499 ◽  
Author(s):  
Zhuo-Heng He ◽  
Jianzhen Liu ◽  
Tin-Yau Tam

Let $\mathbb{H}^{m\times n}$ be the space of $m\times n$ matrices over $\mathbb{H}$, where $\mathbb{H}$ is the real quaternion algebra. Let $A_{\phi}$ be the $n\times m$ matrix obtained by applying $\phi$ entrywise to the transposed matrix $A^{T}$, where $A\in\mathbb{H}^{m\times n}$ and $\phi$ is a nonstandard involution of $\mathbb{H}$. In this paper, some properties of the Moore-Penrose inverse of the quaternion matrix $A_{\phi}$ are given. Two systems of mixed pairs of quaternion matrix Sylvester equations $A_{1}X-YB_{1}=C_{1},~A_{2}Z-YB_{2}=C_{2}$ and $A_{1}X-YB_{1}=C_{1},~A_{2}Y-ZB_{2}=C_{2}$ are considered, where $Z$ is $\phi$-Hermitian. Some practical necessary and sufficient conditions for the existence of a solution $(X,Y,Z)$ to those systems in terms of the ranks and Moore-Penrose inverses of the given coefficient matrices are presented. Moreover, the general solutions to these systems are explicitly given when they are solvable. Some numerical examples are provided to illustrate the main results.

Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5097-5112 ◽  
Author(s):  
Zhuo-Heng He

Let H be the real quaternion algebra and Hmxn denote the set of all m x n matrices over H. For A ? Hm x n, we denote by A? the n x m matrix obtained by applying ? entrywise to the transposed matrix At, where ? is a nonstandard involution of H. A ? Hnxn is said to be ?-Hermitian if A = A?. In this paper, we construct a simultaneous decomposition of four real quaternion matrices with the same row number (A,B,C,D), where A is ?-Hermitian, and B,C,D are general matrices. Using this simultaneous matrix decomposition, we derive necessary and sufficient conditions for the existence of a solution to some real quaternion matrix equations involving ?-Hermicity in terms of ranks of the given real quaternion matrices. We also present the general solutions to these real quaternion matrix equations when they are solvable. Finally some numerical examples are presented to illustrate the results of this paper.


2019 ◽  
Vol 35 ◽  
pp. 266-284 ◽  
Author(s):  
Zhuo-Heng He

In this paper, the pure product singular value decomposition (PSVD) for four quaternion matrices is given. The system of coupled Sylvester-type quaternion matrix equations with five unknowns $X_{i}A_{i}-B_{i}X_{i+1}=C_{i}$ is considered by using the PSVD approach, where $A_{i},B_{i},$ and $C_{i}$ are given quaternion matrices of compatible sizes $(i=1,2,3,4)$. Some necessary and sufficient conditions for the existence of a solution to this system are derived. Moreover, the general solution to this system is presented when it is solvable.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Lin ◽  
Qing-Wen Wang

This paper considers a completion problem of a nonsingular2×2block matrix over the real quaternion algebraℍ: Letm1,  m2,  n1,  n2be nonnegative integers,m1+m2=n1+n2=n>0, andA12∈ℍm1×n2, A21∈ℍm2×n1, A22∈ℍm2×n2, B11∈ℍn1×m1be given. We determine necessary and sufficient conditions so that there exists a variant block entry matrixA11∈ℍm1×n1such thatA=(A11A12A21A22)∈ℍn×nis nonsingular, andB11is the upper left block of a partitioning ofA-1. The general expression forA11is also obtained. Finally, a numerical example is presented to verify the theoretical findings.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yong Tian ◽  
Xin Liu ◽  
Shi-Fang Yuan

The paper deals with the matrix equation A X B + C X   D = E over the generalized quaternions. By the tools of the real representation of a generalized quaternion matrix, Kronecker product as well as vec-operator, the paper derives the necessary and sufficient conditions for the existence of a Hermitian solution and gives the explicit general expression of the solution when it is solvable and provides a numerical example to test our results. The paper proposes a unificated algebraic technique for finding Hermitian solutions to the mentioned matrix equation over the generalized quaternions, which includes many important quaternion algebras, such as the Hamilton quaternions and the split quaternions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Liu ◽  
Huajun Huang ◽  
Zhuo-Heng He

For a quaternion matrix A, we denote by Aϕ the matrix obtained by applying ϕ entrywise to the transposed matrix AT, where ϕ is a nonstandard involution of quaternions. A is said to be ϕ-Hermitian or ϕ-skew-Hermitian if A=Aϕ or A=−Aϕ, respectively. In this paper, we give a complete characterization of the nonstandard involutions ϕ of quaternions and their conjugacy properties; then we establish a new real representation of a quaternion matrix. Based on this, we derive some necessary and sufficient conditions for the existence of a ϕ-Hermitian solution or ϕ-skew-Hermitian solution to the quaternion matrix equation AX=B. Moreover, we give solutions of the quaternion equation when it is solvable.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Ilyas Ali ◽  
Muhammad Akram ◽  
Abdul Shakoor

We determine some necessary and sufficient conditions for the existence of the η-skew-Hermitian solution to the following system AX-(AX)η⁎+BYBη⁎+CZCη⁎=D,Y=-Yη⁎,Z=-Zη⁎ over the quaternion skew field and provide an explicit expression of its general solution. Within the framework of the theory of quaternion row-column noncommutative determinants, we derive its explicit determinantal representation formulas that are an analog of Cramer’s rule. A numerical example is also provided to establish the main result.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Muhammad Akram ◽  
Ilyas Ali ◽  
Abdul Shakoor

We constitute some necessary and sufficient conditions for the system A1X1=C1, X1B1=C2, A2X2=C3, X2B2=C4, A3X1B3+A4X2B4=Cc, to have a solution over the quaternion skew field in this paper. A novel expression of general solution to this system is also established when it has a solution. The least norm of the solution to this system is also researched in this article. Some former consequences can be regarded as particular cases of this article. Finally, we give determinantal representations (analogs of Cramer’s rule) of the least norm solution to the system using row-column noncommutative determinants. An algorithm and numerical examples are given to elaborate our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Juan Yu ◽  
Qing-Wen Wang ◽  
Chang-Zhou Dong

We mainly solve three problems. Firstly, by the decomposition of the (anti-)Hermitian generalized (anti-)Hamiltonian matrices, the necessary and sufficient conditions for the existence of and the expression for the (anti-)Hermitian generalized (anti-)Hamiltonian solutions to the system of matrix equationsAX=B,XC=Dare derived, respectively. Secondly, the optimal approximation solutionmin⁡X∈K⁡∥X^-X∥is obtained, whereKis the (anti-)Hermitian generalized (anti-)Hamiltonian solution set of the above system andX^is the given matrix. Thirdly, the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solutions are considered. In addition, algorithms about computing the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solution and the corresponding numerical examples are presented.


2017 ◽  
Vol 24 (01) ◽  
pp. 169-180 ◽  
Author(s):  
Zhuoheng He ◽  
Qingwen Wang

We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations [Formula: see text] over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2601-2627
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Ilyas Ali ◽  
Muhammad Akram ◽  
Abdul Shakoor

Some necessary and sufficient conditions for the existence of the ?-skew-Hermitian solution quaternion matrix equations the system of matrix equations with ?-skew-Hermicity, A1X = C1, XB1 = C2, A2Y = C3, YB2 = C4, X = -X?*; Y=-Y?*, A3XA?*3 + B3YB?*3=C5, are established in this paper by using rank equalities of the coefficient matrices. The general solutions to the system and its special cases are provided when they are consistent. Within the framework of the theory of noncommutative row-column determinants, we also give determinantal representation formulas of finding their exact solutions that are analogs of Cramer?s rule. A numerical example is also given to demonstrate the main results.


Sign in / Sign up

Export Citation Format

Share Document