scholarly journals The interesting spectral interlacing property for a certain tridiagonal matrix

2020 ◽  
Vol 36 (36) ◽  
pp. 587-598
Author(s):  
Carlos Da Fonseca ◽  
Emrah Kılıç ◽  
António Pereira

In this paper, a new tridiagonal matrix, whose eigenvalues are the same as the Sylvester-Kac matrix of the same order, is provided. The interest of this matrix relies also in that the spectrum of a principal submatrix is also of a Sylvester-Kac matrix given rise to an interesting spectral interlacing property. It is proved alternatively that the initial matrix is similar to the Sylvester-Kac matrix.

Author(s):  
Stefano Massei

AbstractVarious applications in numerical linear algebra and computer science are related to selecting the $$r\times r$$ r × r submatrix of maximum volume contained in a given matrix $$A\in \mathbb R^{n\times n}$$ A ∈ R n × n . We propose a new greedy algorithm of cost $$\mathcal O(n)$$ O ( n ) , for the case A symmetric positive semidefinite (SPSD) and we discuss its extension to related optimization problems such as the maximum ratio of volumes. In the second part of the paper we prove that any SPSD matrix admits a cross approximation built on a principal submatrix whose approximation error is bounded by $$(r+1)$$ ( r + 1 ) times the error of the best rank r approximation in the nuclear norm. In the spirit of recent work by Cortinovis and Kressner we derive some deterministic algorithms, which are capable to retrieve a quasi optimal cross approximation with cost $$\mathcal O(n^3)$$ O ( n 3 ) .


Author(s):  
Florian Mannel

AbstractWe consider the Broyden-like method for a nonlinear mapping $F:\mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ F : ℝ n → ℝ n that has some affine component functions, using an initial matrix B0 that agrees with the Jacobian of F in the rows that correspond to affine components of F. We show that in this setting, the iterates belong to an affine subspace and can be viewed as outcome of the Broyden-like method applied to a lower-dimensional mapping $G:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$ G : ℝ d → ℝ d , where d is the dimension of the affine subspace. We use this subspace property to make some small contributions to the decades-old question of whether the Broyden-like matrices converge: First, we observe that the only available result concerning this question cannot be applied if the iterates belong to a subspace because the required uniform linear independence does not hold. By generalizing the notion of uniform linear independence to subspaces, we can extend the available result to this setting. Second, we infer from the extended result that if at most one component of F is nonlinear while the others are affine and the associated n − 1 rows of the Jacobian of F agree with those of B0, then the Broyden-like matrices converge if the iterates converge; this holds whether the Jacobian at the root is invertible or not. In particular, this is the first time that convergence of the Broyden-like matrices is proven for n > 1, albeit for a special case only. Third, under the additional assumption that the Broyden-like method turns into Broyden’s method after a finite number of iterations, we prove that the convergence order of iterates and matrix updates is bounded from below by $\frac {\sqrt {5}+1}{2}$ 5 + 1 2 if the Jacobian at the root is invertible. If the nonlinear component of F is actually affine, we show finite convergence. We provide high-precision numerical experiments to confirm the results.


2019 ◽  
Vol 7 (1) ◽  
pp. 218-225
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Abstract We consider a particular class of signed threshold graphs and their eigenvalues. If Ġ is such a threshold graph and Q(Ġ ) is a quotient matrix that arises from the equitable partition of Ġ , then we use a sequence of elementary matrix operations to prove that the matrix Q(Ġ ) – xI (x ∈ ℝ) is row equivalent to a tridiagonal matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain intervals in which Ġ has no eigenvalues.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Zhongli Zhou ◽  
Guangxin Huang

The general coupled matrix equations (including the generalized coupled Sylvester matrix equations as special cases) have numerous applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix equations over reflexive matrix solution. When the general coupled matrix equations are consistent over reflexive matrices, the reflexive solution can be determined automatically by the iterative algorithm within finite iterative steps in the absence of round-off errors. The least Frobenius norm reflexive solution of the general coupled matrix equations can be derived when an appropriate initial matrix is chosen. Furthermore, the unique optimal approximation reflexive solution to a given matrix group in Frobenius norm can be derived by finding the least-norm reflexive solution of the corresponding general coupled matrix equations. A numerical example is given to illustrate the effectiveness of the proposed iterative algorithm.


2013 ◽  
Vol 438 (3) ◽  
pp. 1078-1094 ◽  
Author(s):  
Alexander R. Griffing ◽  
Benjamin R. Lynch ◽  
Eric A. Stone
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document