EFFECTS OF CORROSIVE TREATMENT ON STAINLESS STEEL SURFACE FINISHES AND BACTERIAL ATTACHMENT

2003 ◽  
Vol 46 (6) ◽  
pp. 1595-1602 ◽  
Author(s):  
J. W. Arnold ◽  
O. Suzuki
2018 ◽  
Vol 38 (3) ◽  
pp. e12456 ◽  
Author(s):  
Nor Ainy Mahyudin ◽  
Noor Ifatul Hanim Mat Daud ◽  
Nor-Khaizura Mahmud Ab Rashid ◽  
Belal J. Muhialdin ◽  
Nazamid Saari ◽  
...  

1999 ◽  
Vol 65 (10) ◽  
pp. 4543-4548 ◽  
Author(s):  
L.-M. Barnes ◽  
M. F. Lo ◽  
M. R. Adams ◽  
A. H. L. Chamberlain

ABSTRACT Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions ofStaphylococcus aureus, Pseudomonas fragi,Escherichia coli, Listeria monocytogenes, andSerratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.


2018 ◽  
Vol 154 ◽  
pp. 01114 ◽  
Author(s):  
Aria Riswanda ◽  
Indro Pranoto ◽  
Deendarlianto ◽  
Indarto ◽  
Teguh Wibowo

Multiple droplets are drops of water that continuously dropped onto a surface. Spray cooling is an application of the use of droplet on a cooling system. Spray cooling is usually used in a cooling system of electronic devices, and material quenching. In this study, correlations between Weber number and surface temperature decrease rate during multiple droplets impingement are investigated and analyzed. Visualization process is used to help determine the evaporation time of droplets impingement by using high speed camera. Induction stove is used to maintain a stainless steel surface temperature at 120°C, 140°C, and 160°C. The Weber number was varied at 15, and 52.5 to simulate low and medium Weber number. The result of this study shows that increase in Weber number does not increase the temperature decrease rate noticeably. Whereas the Weber number decrease the time required for surface temperature to reach its lowest surface temperature. It was also found that for low and medium Weber number, Weber number affect the evaporation time of multiple droplets after impingement.


1998 ◽  
Vol 97 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Paul R. Rennie ◽  
X.D. Chen ◽  
Antony R. Mackereth

Sign in / Sign up

Export Citation Format

Share Document