Aerodynamic Resistance Coefficients of Agricultural Particulates Determined by Elutriation

1973 ◽  
Vol 16 (5) ◽  
pp. 0918-0921 ◽  
Author(s):  
S. Edward Law ◽  
John A. Collier
INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
A. V. Matseevich ◽  
◽  
A. A. Askadskii ◽  

One of the possible approaches to the analysis of a physical mechanism of time dependence for the resistance coefficients of materials is suggested. The material durability at the constant stress is described using the Zhurkov and Gul' equations and the durability at the alternating stress—using the Bailey criterion. The low strains lead to structuring of a material that is reflected in a reduction of the structure-sensitive coefficient in these equations. This affords 20% increase in the durability. The dependence of the resistance coefficient assumes an extremal character; the maximum is observed at the time to rupture lg tr ≈ 2 (s).


2002 ◽  
Vol 114 (1-2) ◽  
pp. 83-102 ◽  
Author(s):  
Robin L Hall

An experimental study has been made of the gaseous drag torque on an isolated sphere rotating at high Mach numbers. The sphere was suspended electromagnetically and spun by induction. The drag torque has been measured through the transition régime from continuum to free molecule flow at Mach numbers (based on equatorial speed) of up to about five. These high Mach numbers were achieved in heavy vapours (diiodomethane, germanium tetrabromide and stannic bromide) with sonic speed as little as a quarter of that in air. To measure the pressure in the vapour a second (smaller) rotating sphere was used as a pressure gauge. The results agree well with those previously obtained and show an unexpected Mach number dependence in the transition régime.


1983 ◽  
Vol 219 (1215) ◽  
pp. 217-217

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, and released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established which describes this resistance fairly accurately for particle Reynolds numbers in the range 0—60 000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow. Botanists and ecologists concerned with seed and particle dispersal in the environment may find the universal range tables of particular interest and use. This is because the tables obviate the need for the integration of the equations of motion when dealing with individual cases and permit an estimation of range purely on the basis of the specified quantities of particle size, density and altitude of release, atmospheric wind speed, density and viscosity, and the acceleration due to gravity.


Author(s):  
G. Gasymov

A numerical approach, based on obtaining design formulas for the determination of hydraulic resistance coefficients of sites in pipeline transportation systems in the presence of the results of observations over a gas pipeline operating regimes, is proposed. The representation of the hydraulic network in the form of a directed graph allows to essentially reduce the number of equations in the system down to the number of closed loops. In the software implementation of the method described, for the solution of practical problems, group identification of the hydraulic resistance coefficients is provided for every eventuality.


Author(s):  
Souriddha Sanyal ◽  
Ashoktaru Chakraborty ◽  
Angshuman Sarkar ◽  
Susanta K Pradhan ◽  
Utpal Madhu ◽  
...  

Age-hardenable Al–Zn–Mg–Cu (AA 7075) alloys can be fortified by precipitation solidifying because of precipitation of the MgZn2 intermetallic stages. Furthermore, grain refinement and high dislocation density can also be opted for strengthening purposes. A low-temperature deformation enhances the dislocation density and also facilitates the grains recovery to strengthen the component. The present study combines artificial aging (at 120 °C) and sub-zero (∼−20 ˚C) temperature rolling to achieve strengthening. Various sequences and combinations of these mechanical and thermal treatments are performed and the effects of these treatments on the tribological characteristics of the alloy are studied by nano-scratch measurements. The tribological characteristics are indicated by coefficient of friction ( μ), plastic energy ( PE), recovery index ( η), recovery resistance parameter ( Rs), etc. of each sample. The widths of the scratch are further utilized to calculate the scratch hardness values ( Hs), wear resistance coefficients ( Rw) and the coefficient of wear ( K) with the help of Archard's equation.


An experimental and theoretical study has been made of the aerodynamic drag torque on a sphere rotating in a rarefied gas. The drag torque on a magnetically suspended polished steel sphere rotating in air was measured over a wide range of Knudsen numbers from continuum to free molecule flow and for several different Mach numbers up to ca . 1. The drag under free molecule conditions was found to be consistent with the assumption of perfectly diffuse reflexion of molecules at the surface of the rotor. An approximate theory is derived which is analogous to Millikan’s solution to the problem of plane Couette flow and is valid for low Mach and Reynolds numbers. Theory and experiment are found to agree to within 10 % in the range investigated, for Reynolds numbers less than ca . 20.


Sign in / Sign up

Export Citation Format

Share Document