hydraulic network
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
sarah klassen ◽  
Tiago Attorre ◽  
David Brotherson ◽  
Rachna Chhay ◽  
Wayne Johnson ◽  
...  

The Greater Angkor Region was the center of the Khmer Empire from the 9th until the 13th to the 14th centuries CE, when it entered a period of decline. Many studies have suggested that the decline of Angkor was precipitated by several factors, including severe monsoons, geopolitical shifts, and invasions. In this paper, we use light detection and ranging and ground penetrating radar to investigate the possible intersection of two of these existential threats in one feature: the North Bank Wall. Our results indicate that this feature was designed with dual functionality of extending the urban area’s defenses to the east of Angkor Thom while maintaining the existing infrastructure for the distribution and disposal of water. These findings suggest that the North Bank Wall was built before the severe droughts in the mid-13th century. The timing of the construction indicates that the perceived need for additional security—whether from internal factional disputes or external adversaries—predated the final adaptations to the hydraulic network during the unprecedented monsoon variability of the 14th century. These results indicate that perceived political unrest may have played a more important role in the decline of the site than previously known.


Author(s):  
G. Gasymov

A numerical approach, based on obtaining design formulas for the determination of hydraulic resistance coefficients of sites in pipeline transportation systems in the presence of the results of observations over a gas pipeline operating regimes, is proposed. The representation of the hydraulic network in the form of a directed graph allows to essentially reduce the number of equations in the system down to the number of closed loops. In the software implementation of the method described, for the solution of practical problems, group identification of the hydraulic resistance coefficients is provided for every eventuality.


2021 ◽  
Vol 19 ◽  
pp. 149-154
Author(s):  
Sandra Couto ◽  
◽  
Elisabete M. Ferreira ◽  
Diogo Sá ◽  
Catarina Corte-Real ◽  
...  

At present, most of the worldwide transformer fleet uses mineral oil as insulation fluid. However, the use of natural ester is playing an increasing role as safer and eco-friendly alternative to mineral oil. From the utilities’ perspective, the change in the mineral oil paradigm can be approached by replacing their assets by new eco-friendly transformers or refurbishing their assets, substituting only the insulating fluid. To make an informed decision, guidelines indicating how a transformer designed for mineral oil would behave when operating with natural ester, are of paramount importance. In the present research, temperature rise tests were carried out in a 15MVA ODAF core-type power transformer, under different operating conditions. Tests were run for mineral oil as insulating fluid and subsequently repeated for natural ester. To gain further insights on experimental results, thermal modelling of the transformer under the same test conditions was carried out, using Thermal-Hydraulic Network Models and Computational Fluid Dynamics techniques. From the present work it was found that the relationship between the thermal behaviour of the transformer using natural ester or mineral oil is not simple as it depends on the operating conditions of the transformer and on the geometry of the windings.


2021 ◽  
Vol 13 (11) ◽  
pp. 2094
Author(s):  
Sarah Klassen ◽  
Tiago Attorre ◽  
David Brotherson ◽  
Rachna Chhay ◽  
Wayne Johnson ◽  
...  

The Greater Angkor Region was the center of the Khmer Empire from the 9th until the 13th to the 14th centuries CE, when it entered a period of decline. Many studies have suggested that the decline of Angkor was precipitated by several factors, including severe monsoons, geopolitical shifts, and invasions. In this paper, we use light detection and ranging and ground penetrating radar to investigate the possible intersection of two of these existential threats in one feature: the North Bank Wall. Our results indicate that this feature was designed with dual functionality of extending the urban area’s defenses to the east of Angkor Thom while maintaining the existing infrastructure for the distribution and disposal of water. These findings suggest that the North Bank Wall was built before the severe droughts in the mid-13th century. The timing of the construction indicates that the perceived need for additional security—whether from internal factional disputes or external adversaries—predated the final adaptations to the hydraulic network during the unprecedented monsoon variability of the 14th century. These results indicate that perceived political unrest may have played a more important role in the decline of the site than previously known.


2021 ◽  
Author(s):  
Valentin Couvreur ◽  
Adrien Heymans ◽  
Guillaume Lobet ◽  
Malcolm Bennett ◽  
Xavier Draye

<p>Guttation is the exudation of xylem sap from vascular plant leaves. This process is particularly interesting because in its configuration root water uptake occurs against the hydrostatic pressure driving force. Hence, it emphasizes the contribution of another driving force that lifts water in plants: the osmotic potential gradient.</p><p>The current paradigm of root water uptake explains that, due to the endodermal apoplastic barrier, water flows across root radius from the same principles as through selective membranes: driven by the total water potential gradient. This theory relies on the idea that during guttation, osmolites loaded in xylem vessels decrease xylem total water potential, making it more negative than the total soil water potential, and generating water inflow by osmosis as in an osmometer.</p><p>However, this theory fails at explaining experiments in which guttation occurs without sufficient solute loading in root xylem of maize (Enns et al., 1998; Enns et al., 2000) and arrowleaf saltbush (Bai et al., 2007) among others; studies concluding that experimental observations “could not be explained with the current theories in plant physiology”. Such flow rates towards combined increasing pressure potentials and increasing osmotic potentials between separate apoplastic compartments would necessitate an effective root radial conductivity that is negative; a mind bender.</p><p>What piece of hydraulic network would make it possible for water to flow against the total water potential driving force?</p><p>We implemented Steudle’s composite water transport model in the explicit root cross-section anatomical hydraulic network MECHA (Couvreur et al., 2018). All apoplastic, transmembrane and symplastic pathways are interconnected in the network. The results show that while root radial conductivity is particularly sensitive to cell membrane permeability, the combination of conductive plasmodesmata and increased dilution of protoplast osmotic potentials inwards is a key to explain root water flow towards increasing total potentials. A triple cell theory is suggested as new paradigm of root radial flow.</p><p><strong>References</strong></p><p>Bai X-F, Zhu J-J, Zhang P, Wang Y-H, Yang L-Q, Zhang L (2007) Na+ and Water Uptake in Relation to the Radial Reflection Coefficient of Root in Arrowleaf Saltbush Under Salt Stress. Journal of Integrative Plant Biology 49: 1334-1340</p><p>Couvreur V, Faget M, Lobet G, Javaux M, Chaumont F, Draye X (2018) Going with the Flow: Multiscale Insights into the Composite Nature of Water Transport in Roots. Plant Physiology 178: 1689-1703</p><p>Enns LC, Canny MJ, McCully ME (2000) An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as the source of root pressure. Protoplasma 211: 183-197</p><p>Enns LC, McCully ME, Canny MJ (1998) Solute concentrations in xylem sap along vessels of maize primary roots at high root pressure. J. Exp. Bot. 49: 1539-1544</p>


2021 ◽  
pp. 31-46
Author(s):  
Рустем Юсуфович Турна

For spacecraft (SC) with power unit capacity more than 4 ... 6 kW promising construction of thermal control system (TCS) based on two-phase mechanically pumped loops (2PMPL). The development of 2PMPL has been carried out quite intensively since the early '80s. However, so far there are no examples of practical implementation of such high-power systems. One of the main reasons mentioned is the novelty of the system, and insufficient study of its operation in space conditions, which adds risks. The most important component of such systems is a heat rejection subsystem (HRS), whose task is to reject heat from the coolant and radiate it into space. In its turn, HRS is also a system, the design of which requires using a system approach, considering various aspects of its operation. HRS includes a heat-hydraulic network and a radiation heat exchanger (RHE). The key elements of the HRS are condensers (CC), quite new devices for space technology. This paper presents an algorithm for the design and optimization of the heat rejection subsystem (HRS) of a satellite two-phase thermal control system. The methodology of engineering synthesis of complex technical systems and informal procedures for multi-criteria optimization of elements and subsystems at various stages of HRS design is repeatedly used. t is shown that optimization should be carried out both at the level of elements and subsystems, and at the level of the whole thermal control system. As a result of the study, the HRS design is proposed, which uses condensers in the form of smooth steel tubes of constant cross-section and their series-parallel connection scheme in the hydraulic network. Main advantages of the design: traditional for single-phase loops elements are used; operation of elements and subsystems in zero gravity conditions is predictable and allows complete testing on the ground without mandatory flight experiment; the system is operable at high saturation pressures (temperatures) (on ammonia - up to 85℃).


2021 ◽  
Vol 13 (2) ◽  
pp. 291
Author(s):  
Javier Fernández-Lozano ◽  
Enoc Sanz-Ablanedo

The province of León preserves a unique hydraulic infrastructure 1200 km-long, used for the exploitation of auriferous deposits in Roman times. It represents the most extensive waterworks in Europe and is one of the best-preserved examples of mining heritage in Antiquity. In this work, three mining exploitation sectors (upper, middle, and lower) characterized by channels and leats developed in different geological materials were examined, using Unmanned Aerial Vehicles (UAVs). A multi-approach based on a comparison of photogrammetric and multispectral data improved the identification and description of the hydraulic network. Comparison with traditional orthoimages and LiDAR data suggests that UAV-derived multispectral images are of great interest in areas where these sets of data have low resolution or areas that are densely covered by vegetation. The results showed that the size of the channel box and its width were factors that do not depend exclusively on the available water resources, as previously suggested, but also on the geological and hydraulic conditioning factors that intervene in each sector. Additionally, the detailed study allowed the establishment of a water sheet maximum height that was much lower than previously thought. All in all, these inferences might help researchers develop new strategies for mapping the Roman mining infrastructure and establishing the importance of geological inheritance on the construction of the hydraulic system that led the Romans to the accomplishment of the largest mining infrastructure ever known in Europe.


Vestnik IGEU ◽  
2020 ◽  
pp. 64-70
Author(s):  
V.A. Naumov

Simple hydraulic networks with a centrifugal pump are not only part of complex networks, but are also widely used in Autonomous water supply and Sewerage systems. The mathematical model of simple networks taking into account the variable level of liquid in reservoirs includes the well-known Bernoulli equation for non-stationary flows. Published works on this problem do not take into account the non-stationary nature of the flow due to the variable liquid level. The conditions for using the quasi-stationary model are not discussed. Similarity criteria for the issue were not found. The purpose of the study is to analyze the non-stationary mathematical model of the object, including the definition of criteria for similarity of the problem and their impact on the solution. The well-known equations of fluid quantity balance and Bernoulli for non-stationary flows with smoothly changing characteristics were used as a mathematical model of a simple hydraulic network. The pressure characteristic of a centrifugal pump is approximated by a well-established dependence in the form of a square three-member. The system of differential equations was reduced to a dimensionless form. Analytical and numerical methods were used to solve the problem. The analysis of the mathematical model of pumping liquid by a centrifugal pump in a hydraulic network with a variable level was carried out. The dimensionless form of the system of equations allowed us to determine three similarity criteria for the problem, including the analog of the Struhal number Str. The analytical solution to the Cauchy problem is found in the quasi-stationary formulation (Str = 0). The solution of the problem in the full statement is obtained by the numerical method. The results of the study of the influence of similarity criteria on the solution are presented. The dimensionless flow rate of the liquid decreases with increasing Str values. In this case, the maximum volume of liquid and the time to reach it increases. Increasing the values of the other two criteria leads to an increase in both the flow rate and the maximum volume of the liquid. The analytical solution in the quasi-rational formulation can be used only for Str < 0,1. The results obtained can be used in the design of Autonomous Water supply and Sewerage systems. Further research for the non-self-similar area of hydraulic resistance and for variable fluid viscosity is promising.


Sign in / Sign up

Export Citation Format

Share Document