Energy efficiency and air distribution of VFD-driven mechanical ventilation systems

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 98
Author(s):  
Effrosyni Giama

Buildings are responsible for approximately 30–40% of energy consumption in Europe, and this is a fact. Along with this fact is also evident the existence of a defined and strict legislation framework regarding energy efficiency, decarbonization, sustainability, and renewable energy systems in building applications. Moreover, information and communication technologies, along with smart metering for efficient monitoring, has come to cooperate with a building’s systems (smart buildings) to aim for more advanced and efficient energy management. Furthermore, the well-being in buildings still remains a crucial issue, especially nowadays that health and air quality are top priority goals for occupants. Taking all the above into consideration, this paper aims to analyze ventilation technologies in relation to energy consumption and environmental impact assessment using the life cycle approach. Based on the review analysis of the existing ventilation technologies, the emphasis is given to parameters related to the efficient technical design of ventilation systems and their adequate maintenance under the defined guidelines and standards of mechanical ventilation operation. These criteria can be the answer to the complicated issue of energy efficiency along with indoor air quality targets. The ventilation systems are presented in cooperation with heating and cooling system operations and renewable energy system applications ensuring an energy upgrade and reduced greenhouse gas emissions. Finally, the mechanical ventilation is examined in a non-residential building in Greece. The system is compared with the conventional construction typology of the building and in cooperation with PVs installation in terms of the environmental impact assessment and energy efficiency. The methodology implemented for the environmental evaluation is the Life Cycle Analysis supported by OpenLca software.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Aldona Skotnicka-Siepsiak

Energy-saving ventilation systems are designed to improve the energy efficiency of buildings. Low energy efficiency in buildings poses a considerable problem that needs to be addressed. Mechanical ventilation with heat recovery has gained increased popularity in recent years. Mechanical ventilation has numerous advantages, including easy adjustment and control, high indoor air quality and elimination of indoor pollutants. Mixing ventilation is the most popular type of mechanical ventilation, in particular in residential buildings. Unsteady ventilation is a type of mixing ventilation that involves stronger mixing effects and smaller vertical temperature gradients to improve indoor air quality (IAQ) and minimize energy consumption. This study examines the possibility of controlling and modifying Coanda effect hysteresis (CEH) to generate unsteady flow and simulate the conditions of unsteady mixing ventilation. The experiment was performed on a self-designed test bench at the University of Warmia and Mazury in Olsztyn. It demonstrated that an auxiliary nozzle can be applied at the diffuser outlet to control CEH and the angles at which the air jet becomes attached to and separated from the flat plate positioned directly behind the nozzle. The study proposes an innovative mixing ventilation system that relies on CEH. The potential of the discussed concept has not been recognized or deployed in practice to date. This is the first study to confirm that an auxiliary nozzle by the diffuser outlet can be operated in both injection and suction mode to control CEH. In the future, the results can be used to design a new type of nozzles for unsteady ventilation systems that are based on CEH control.


2005 ◽  
Vol 39 (34) ◽  
pp. 6315-6325 ◽  
Author(s):  
Jerker Fick ◽  
Linda Pommer ◽  
Anders Åstrand ◽  
Ronny Östin ◽  
Calle Nilsson ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 179-204 ◽  
Author(s):  
Jodi Smits Anderson

We have spent the last 40–50 years working for energy efficiency in our buildings, and we have done so by increasing the performance of the heating, cooling, lighting, and ventilation systems we use. Only recently have we realized the importance of the building envelope in this endeavor. The spaces within a building are created to support the purpose and programs of that building, and it is the envelope made up of the walls, windows, doors, roof, skylights, and floor that protect and shelter those programs and purpose. In this article we will explore various components of the building envelope and discuss ways to achieve optimal energy use.


2018 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Arman Kostuganov ◽  
Yuri Vytchikov ◽  
Andrey Prilepskiy

The article describes development and application of self-contained ventilation systems in civil buildings. It suggests several models of air exchange within the building, compares these models and points out the variant of ventilating with self-contained mechanical systems with utilization of heat. The researchers conclude that structurally self-contained systems of mechanical ventilation with utilization of heat are most efficiently built into window constructions. This installation variant makes it possible to keep the interior, avoid building construction strengthening, shorten time and labor input of construction-assembling works, allow rational use of the vertical building envelopes area without extra space using. The paper key issue is the development of constructive solutions of self-contained ventilation systems main elements to ensure the possibility of their use in window structures. This research stage was developed with account of previous results of field tests and of such ventilation systems theoretical descriptions. The authors assess limit dimensions of the systems suitable for installment into window constructions of civil buildings in the view of modern Russian requirements to thermal protection. The research suggests a general constructive solution of such a ventilation system and a heat exchanger model which can be used as an air heat utilizer in these systems.


Author(s):  
A I Sharapov ◽  
E Y Myakotina ◽  
Y V Shatskikh ◽  
A V Peshkova

2019 ◽  
Vol 18 (4) ◽  
pp. 303-312 ◽  
Author(s):  
Jack Harvie-Clark ◽  
Nick Conlan ◽  
Weigang Wei ◽  
Mark Siddall

Sign in / Sign up

Export Citation Format

Share Document