Water Use efficiency of Energy Sorghum in South Texas

2015 ◽  
Vol 81 ◽  
pp. 339-344 ◽  
Author(s):  
J. Enciso ◽  
J. Jifon ◽  
L. Ribera ◽  
S.D. Zapata ◽  
G.K. Ganjegunte

2019 ◽  
Vol 62 (5) ◽  
pp. 1207-1218 ◽  
Author(s):  
Jose C. Chavez ◽  
Juan Enciso ◽  
Girisha Ganjegunte ◽  
Nithya Rajan ◽  
John Jifon ◽  
...  

Abstract. Biomass sorghum ( (L.) Moench) is widely recognized for its high biomass yield potential, high efficiency in converting solar energy into biomass, and high efficiency in water use for biofuel production. Therefore, it could be a sustainable alternative to traditional food/feed crops in south Texas. The objectives of this investigation were to: (1) quantify the growth response and dry biomass productivity of a forage sorghum hybrid (Pioneer 877F) and two high-biomass sorghum hybrids (Blade ES 5140 and Blade ES 5200) in south Texas, (2) determine the radiation use efficiency (RUE) and water use efficiency (WUE) of the sorghum hybrids over two years, and (3) identify variations in WUE and water used among the hybrids. The experiments were conducted at the Texas A&M AgriLife Research Center at Weslaco, Texas, during the 2015 and 2016 growing seasons. There were significant differences among hybrids during the two years in dry biomass, RUE, and WUE. The highest productivities and efficiencies were observed in the biomass hybrids. Blade ES 5200 produced an average dry biomass of 32.8 Mg ha-1 with a leaf area index (LAI) of 6.0 m2 m-2, RUE of 4.92 g MJ-1, and WUE of 6.98 kg m-3. In contrast to the biomass hybrids, the forage hybrid produced the lowest yields. The average dry biomass observed was 20.9 Mg ha-1 with an LAI of 2.6 m2 m-2, RUE of 3.52 g MJ-1, and WUE of 4.28 kg m-3. Our results show that biomass sorghum hybrids can produce up to 66% more biomass than forage hybrids, and they have potential for producing as much as 33 Mg ha-1 with 530 mm of water using drip irrigation in south Texas. Keywords: Biomass sorghum, Crop growth rate, Radiation use efficiency, Water use efficiency.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Juan Enciso ◽  
Jose C. Chavez ◽  
Girisha Ganjegunte ◽  
Samuel D. Zapata

Water availability and supply are critical factors in the production of bioenergy. Dry biomass productivity and water use efficiency (WUE) of two biomass sorghum cultivars (Sorghum bicolor (L.) Moench) were studied in two different climatic locations during 2014 and 2015. The objective of this field study was to evaluate the dry biomass productivity and water use efficiency of two energy sorghum cultivars grown in two different climatic environments: one at Pecos located in the Chihuahuan Desert and a second one located at Weslaco in the Lower Rio Grande bordering Mexico and with a semiarid environment. There were significant differences between locations in dry biomass and WUE. Dry biomass productivity ranged from 22.4 to 31.9 Mg ha−1 in Weslaco, while in Pecos it ranged from 7.4 to 17.6 Mg ha−1. Even though it was possible to produce energy sorghum biomass in an arid environment with saline-sodic soils and saline irrigation, the energy sorghum dry biomass yield was reduced more than 50% in the arid environment compared to production in a semiarid environment with good soil and water quality, and it required approximately twice as much water. Harsh production conditions combined with low energy prices resulted in negative net returns for all treatments. However, a moderate increase in ethanol price could make the semiarid cropland of Texas an economically feasible feedstock production location.


2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document