Reliability of Genotype-Specific Parameter Estimation for Crop Models: Insights from a Markov Chain Monte-Carlo Estimation Approach

2017 ◽  
Vol 60 (5) ◽  
pp. 1699-1712
Author(s):  
Subodh Acharya ◽  
Melanie Correll ◽  
James W. Jones ◽  
Kenneth J. Boote ◽  
Phillip D. Alderman ◽  
...  

Abstract. Parameter estimation is a critical step in successful application of dynamic crop models to simulate crop growth and yield under various climatic and management scenarios. Although inverse modeling parameterization techniques significantly improve the predictive capabilities of models, whether these approaches can recover the true parameter values of a specific genotype or cultivar is seldom investigated. In this study, we applied a Markov Chain Monte-Carlo (MCMC) method to the DSSAT dry bean model to estimate (recover) the genotype-specific parameters (GSPs) of 150 synthetic recombinant inbred lines (RILs) of dry bean. The synthetic parents of the population were assigned contrasting GSP values obtained from a database, and each of these GSPs was associated with several quantitative trait loci. A standard inverse modeling approach that simultaneously estimated all GSPs generated a set of values that could reproduce the original synthetic observations, but many of the estimated GSP values significantly differed from the original values. However, when parameter estimation was carried out sequentially in a stepwise manner, according to the genetically controlled plant development process, most of the estimated parameters had values similar to the original values. Developmental parameters were more accurately estimated than those related to dry mass accumulation. This new approach appears to reduce the problem of equifinality in parameter estimation, and it is especially relevant if attempts are made to relate parameter values to individual genes. Keywords: Crop models, Equifinality, Genotype-specific parameters, Markov chain Monte-Carlo, Parameterization.

2019 ◽  
Vol 77 (3) ◽  
pp. 1043-1064 ◽  
Author(s):  
Marcus van Lier-Walqui ◽  
Hugh Morrison ◽  
Matthew R. Kumjian ◽  
Karly J. Reimel ◽  
Olivier P. Prat ◽  
...  

Abstract Observationally informed development of a new framework for bulk rain microphysics, the Bayesian Observationally Constrained Statistical–Physical Scheme (BOSS; described in Part I of this study), is demonstrated. This scheme’s development is motivated by large uncertainties in cloud and weather simulations associated with approximations and assumptions in existing microphysics schemes. Here, a proof-of-concept study is presented using a Markov chain Monte Carlo sampling algorithm with BOSS to probabilistically estimate microphysical process rates and parameters directly from a set of synthetically generated rain observations. The framework utilized is an idealized steady-state one-dimensional column rainshaft model with specified column-top rain properties and a fixed thermodynamical profile. Different configurations of BOSS—flexibility being a key feature of this approach—are constrained via synthetic observations generated from a traditional three-moment bulk microphysics scheme. The ability to retrieve correct parameter values when the true parameter values are known is illustrated. For cases when there is no set of true parameter values, the accuracy of configurations of BOSS that have different levels of complexity is compared. It is found that addition of the sixth moment as a prognostic variable improves prediction of the third moment (proportional to bulk rain mass) and rain rate. In contrast, increasing process rate formulation complexity by adding more power terms has little benefit—a result that is explained using further-idealized experiments. BOSS rainshaft simulations are shown to well estimate the true process rates from constraint by bulk rain observations, with the additional benefit of rigorously quantified uncertainty of these estimates.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 606
Author(s):  
Alaa Jamal ◽  
Raphael Linker

Particle filter has received increasing attention in data assimilation for estimating model states and parameters in cases of non-linear and non-Gaussian dynamic processes. Various modifications of the original particle filter have been suggested in the literature, including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later, using genetic algorithm evolutionary operators as part of the state updating process. In this work, a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously and without assuming Gaussian distribution for priors is presented. The method was tested on two simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic operators are used only for state adjustments. The influence of ensemble size, measurement noise, and mutation and crossover parameters were also investigated. Accurate and stable estimations of the model states were obtained in all cases. Parameter estimation was more challenging than state estimation and not all parameters converged to their true value, especially when the parameter value had little influence on the measured variables. Overall, the proposed method showed more accurate and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed highly conservative behavior. The superiority of the proposed method was more pronounced when the ensemble included a large number of particles and the measurement noise was low.


Sign in / Sign up

Export Citation Format

Share Document