microphysical process
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 21 (23) ◽  
pp. 17649-17664
Author(s):  
Yang Yi ◽  
Fan Yi ◽  
Fuchao Liu ◽  
Yunpeng Zhang ◽  
Changming Yu ◽  
...  

Abstract. Mid-level stratiform precipitations during the passage of warm fronts were detailedly observed on two occasions (light and moderate rain) by a 355 nm polarization lidar and water vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks shown in the lidar signal (X) and volume depolarization ratio (δv) reveal some ubiquitous features of the microphysical process of precipitating hydrometeors. We find that for the light-rain case precipitation that reaches the surface begins as ice-phase-dominant hydrometeors that fall out of a shallow liquid cloud layer at altitudes above the 0 ∘C isotherm level, and the depolarization ratio magnitude of falling hydrometeors increases from the liquid-water values (δv<0.09) to the ice/snow values (δv>0.20) during the first 100–200 m of their descent. Subsequently, the falling hydrometeors yield a dense layer with an ice/snow bright band occurring above and a liquid-water bright band occurring below (separated by a lidar dark band) as a result of crossing the 0 ∘C level. The ice/snow bright band might be a manifestation of local hydrometeor accumulation. Most falling raindrops shrink or vanish in the liquid-water bright band due to evaporation, whereas a few large raindrops fall out of the layer. We also find that a prominent δv peak (0.10–0.40) always occurs at an altitude of approximately 0.6 km when precipitation reaches the surface, reflecting the collision–coalescence growth of falling large raindrops and their subsequent spontaneous breakup. The microphysical process (at ice-bright-band altitudes and below) of moderate rain resembles that of the light-rain case, but more large-sized hydrometeors are involved.


2021 ◽  
Vol 893 (1) ◽  
pp. 012001
Author(s):  
D Nurheliza ◽  
N J Trilaksono ◽  
F Renggono

Abstract Rain microstructure is a critical aspect to understand the dynamics and microphysics character of the clouds. It is characterized by the distribution of size, fall velocity and shape of raindrop. Raindrop size distribution (DSD) explains the detail of the microphysical process because it represents a process of rain to the surface. One of the phenomena that influence the rain patterns in Indonesia is Madden Julian Oscillation (MJO). Therefore, observing rain microstructure with its relation to MJO can determine the differences in rainfall characteristic and microphysical processes during active and inactive MJO period. The data used in this study are Micro Rain Radar (MRR), disdrometer, and real-time multivariate (RMM) index data. The period/date selection of active MJO event performed using RMM index method is more than 1 in phases 4 and 5 and otherwise for inactive MJO. Types of rain are divided into stratiform and convective rain based on disdrometer data. From that, there are 46 active and 52 inactive MJO events. Rain microstructure in this study focuses on DSD from disdrometer and micro rain radar data analyzed with liquid water content profile, fall velocity, reflectivity, and rain rate from MMR. Besides, there are parameters of DSD, which are the mass-weighted diameter (Dm) and total concentration (Nw), calculated using the moment and gamma distribution method. The result shows that DSD and other parameters are greater during inactive MJO period. It means that process of collision-coalescence, evaporation, and updraft is dominant during inactive MJO period.


Author(s):  
Suzhou Pang ◽  
Zheng Ruan ◽  
Ling Yang ◽  
Xiantong Liu ◽  
Zhaoyang Huo ◽  
...  

AbstractDoppler spectra measured by vertically pointing radars are inherently linked to raindrop size distributions (DSDs). But, accurate estimation of DSDs remains challenging because raindrop spectra are broadened by atmospheric turbulence and shifted by vertical air motions. This paper presents a novel method to estimate vertical air motions that there is no need to assume a model for DSD at each range gate. The theory of the new method is that the spectral difference between the adjacent range gates is contributed by vertical air motions and the variability of DSDs. The contribution of the change of DSDs is estimated by looking up the prepared tables (LUTs) of raindrop velocity difference and shape function difference. Then, the vertical air motions can be estimated by minimizing the cost function of the two spectra between the adjacent range gates. The retrieval algorithm is applied to three cases including a stratiform and two convective observed by a C band vertically pointing radar in Longmen, Guangdong province of China in June 2016. Before that, the spectrum broadening effect is removed by the traditional deconvolution method with a wind profiler. The vertical profiles of precipitation parameters are also retrieved to investigate the microphysical process. The precipitation parameters retrieved near the surface are compared with the ground data collected by a two-dimensional video disdrometer(2DVD) and the results show good agreements.


2021 ◽  
Author(s):  
Yang Yi ◽  
Fan Yi ◽  
Fuchao Liu ◽  
Yunpeng Zhang ◽  
Changming Yu ◽  
...  

Abstract. Mid-level stratiform precipitations during the passage of warm front were detailedly observed on two occasions (light and moderate rain) by a 355-nm polarization lidar and water-vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks shown in the lidar signal (X) and volume depolarization ratio (δv) reveal some ubiquitous features of the microphysical process of precipitating hydrometeors. We find that for the light rain case, surface rainfall begins as supercooled liquid-drop-dominated hydrometeors fall out of their liquid parent cloud at altitudes above the 0 °C level, and most liquid drops quickly freeze into ice particles (δv > 0.25) during the first 100–200 m of their descent, where humid aerosol particles exist. Subsequently, the falling hydrometeors yield a dense layer with an ice/snow bright band occurring above and a liquid-water bright band occurring below (separated by a lidar dark band) as a result of crossing the 0 °C level. The ice/snow bright band might be a manifestation of local hydrometeor accumulation. Most falling raindrops shrink or vanish in the liquid-water bright band due to evaporation, whereas a few large raindrops fall out of the layer. We also find that a prominent depolarization δv peak (0.10–0.35) always occurs at an altitude of approximately 0.6 km during surface rainfall, reflecting the collision-coalescence growth of falling large raindrops and their subsequent spontaneous breakup. The microphysical process (at ice-bright-band altitudes and below) of moderate rain resembles that of the light rain case, but more large-sized hydrometeors are involved.


2021 ◽  
Author(s):  
Karly Reimel ◽  
Marcus van Lier-Walqui ◽  
Matthew Kumjian ◽  
Hugh Morrison ◽  
Olivier Prat

&lt;p&gt;Representing microphysics within weather and climate models is challenging because we lack fundamental understanding of microphysical processes and are limited by the computational inability to track each hydrometeor within a cloud system. &amp;#160;Microphysics schemes parameterize rates for specific processes such as drop evaporation, collision-coalescence, or collisional-breakup, but their inherent assumptions lead to uncertainty in model solutions which are often difficult to understand and quantify. Observations such as those from polarimetric radar provide insight into the microphysical evolution of clouds, but alone they are unable to provide quantitative information about the process rates that lead to this evolution. The Bayesian Observationally Constrained Statistical-Physical Scheme (BOSS) is a recently-developed bulk microphysics scheme designed to bridge the gap between observations and the processes acting on individual drops, such that process rate information can be directly learned from polarimetric radar observations. BOSS operates with no predefined drop size distribution (DSD) shape and makes few assumptions about the process rate formulations. Because there is no prescribed DSD shape, a new moment-based polarimetric forward operator is used to relate model prognostic moment output to polarimetric radar variables. &amp;#160;Process rates are written as generalized power functions of the prognostic DSD moments (related to bulk quantities such as mass concentrations), with flexibility to choose the number and order of the prognostic DSD moments and number of power terms in the process rate formulations.&amp;#160; The corresponding process rate parameters are constrained directly with observation using Markov chain Monte Carlo in a Bayesian inference framework, allowing BOSS to learn microphysical information directly from observations while simultaneously quantifying parametric uncertainty. The process rate formulations in BOSS can be made systematically more complex by adding more terms and/or more prognostic DSD moments, which allows us also to track down sources of structural uncertainty. In this study, we use a detailed bin microphysics scheme as &amp;#8220;truth&amp;#8221; to generate the constraining observations synthetically, which include profiles of polarimetric radar variables (Z&lt;sub&gt;H&lt;/sub&gt;, Z&lt;sub&gt;DR&lt;/sub&gt;, K&lt;sub&gt;DP&lt;/sub&gt;) and vertical fluxes of prognostic DSD moments at the surface. An error analysis shows that BOSS produces process rate profiles similar to those of a bin scheme when only provided polarimetric rain profiles and surface prognostic moment fluxes. We also display initial results where BOSS is used to estimate microphysical process rate information from real polarimetric radar observations. &amp;#160;&lt;/p&gt;


2021 ◽  
Vol 14 (2) ◽  
pp. 935-959
Author(s):  
Michael Steiner ◽  
Beiping Luo ◽  
Thomas Peter ◽  
Michael C. Pitts ◽  
Andrea Stenke

Abstract. Polar stratospheric clouds (PSCs) contribute to catalytic ozone destruction by providing surfaces for the conversion of inert chlorine species into active forms and by denitrification. The latter describes the removal of HNO3 from the stratosphere by sedimenting PSC particles, which hinders chlorine deactivation by the formation of reservoir species. Therefore, an accurate representation of PSCs in chemistry–climate models (CCMs) is of great importance to correctly simulate polar ozone concentrations. Here, we evaluate PSCs as simulated by the CCM SOCOLv3.1 for the Antarctic winters 2006, 2007 and 2010 by comparison with backscatter measurements by CALIOP on board the CALIPSO satellite. The year 2007 represents a typical Antarctic winter, while 2006 and 2010 are characterized by above- and below-average PSC occurrence. The model considers supercooled ternary solution (STS) droplets, nitric acid trihydrate (NAT) particles, water ice particles and mixtures thereof. PSCs are parameterized in terms of temperature and partial pressures of HNO3 and H2O, assuming equilibrium between the gas and particulate phase. The PSC scheme involves a set of prescribed microphysical parameters, namely ice number density, NAT particle radius and maximum NAT number density. In this study, we test and optimize the parameter settings through several sensitivity simulations. The choice of the value for the ice number density affects simulated optical properties and dehydration, while modifying the NAT parameters impacts stratospheric composition via HNO3 uptake and denitrification. Depending on the NAT parameters, reasonable denitrification can be modeled. However, its impact on ozone loss is minor. The best agreement with the CALIOP optical properties and observed denitrification was for this case study found with the ice number density increased from the hitherto used value of 0.01 to 0.05 cm−3 and the maximum NAT number density from 5×10-4 to 1×10-3 cm−3. The NAT radius was kept at the original value of 5 µm. The new parameterization reflects the higher importance attributed to heterogeneous nucleation of ice and NAT particles following recent new data evaluations of the state-of-the-art CALIOP measurements. A cold temperature bias in the polar lower stratosphere results in an overestimated PSC areal coverage in SOCOLv3.1 by up to 40 %. Offsetting this cold bias by +3 K delays the onset of ozone depletion by about 2 weeks, which improves the agreement with observations. Furthermore, the occurrence of mountain-wave-induced ice, as observed mainly over the Antarctic Peninsula, is continuously underestimated in the model due to the coarse model resolution (T42L39) and the fixed ice number density. Nevertheless, we find overall good temporal and spatial agreement between modeled and observed PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes, which avoid nucleation and growth calculations in sophisticated but time-consuming microphysical process models, may also achieve good approximations of the fundamental properties of PSCs needed in CCMs.


2021 ◽  
Vol 21 (3) ◽  
pp. 1485-1505
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Odran Sourdeval ◽  
Holger Tost ◽  
Jos Lelieveld ◽  
...  

Abstract. Microphysical processes in cold clouds which act as sources or sinks of hydrometeors below 0 ∘C control the ice crystal number concentrations (ICNCs) and in turn the cloud radiative effects. Estimating the relative importance of the cold cloud microphysical process rates is of fundamental importance to underpin the development of cloud parameterizations for weather, atmospheric chemistry, and climate models and to compare the output with observations at different temporal resolutions. This study quantifies and investigates the ICNC rates of cold cloud microphysical processes by means of the chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) and defines the hierarchy of sources and sinks of ice crystals. Both microphysical process rates, such as ice nucleation, aggregation, and secondary ice production, and unphysical correction terms are presented. Model ICNCs are also compared against a satellite climatology. We found that model ICNCs are in overall agreement with satellite observations in terms of spatial distribution, although the values are overestimated, especially around high mountains. The analysis of ice crystal rates is carried out both at global and at regional scales. We found that globally the freezing of cloud droplets and convective detrainment over tropical land masses are the dominant sources of ice crystals, while aggregation and accretion act as the largest sinks. In general, all processes are characterized by highly skewed distributions. Moreover, the influence of (a) different ice nucleation parameterizations and (b) a future global warming scenario on the rates has been analysed in two sensitivity studies. In the first, we found that the application of different parameterizations for ice nucleation changes the hierarchy of ice crystal sources only slightly. In the second, all microphysical processes follow an upward shift in altitude and an increase by up to 10 % in the upper troposphere towards the end of the 21st century.


2020 ◽  
Vol 20 (22) ◽  
pp. 13771-13780
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Toshihiko Takemura

Abstract. Complex aerosol–cloud–precipitation interactions lead to large differences in estimates of aerosol impacts on climate among general circulation models (GCMs) and satellite retrievals. Typically, precipitating hydrometeors are treated diagnostically in most GCMs, and their radiative effects are ignored. Here, we quantify how the treatment of precipitation influences the simulated effective radiative forcing due to aerosol–cloud interactions (ERFaci) using a state-of-the-art GCM with a two-moment prognostic precipitation scheme that incorporates the radiative effect of precipitating particles, and we investigate how microphysical process representations are related to macroscopic climate effects. Prognostic precipitation substantially weakens the magnitude of ERFaci (by approximately 54 %) compared with the traditional diagnostic scheme, and this is the result of the increased longwave (warming) and weakened shortwave (cooling) components of ERFaci. The former is attributed to additional adjustment processes induced by falling snow, and the latter stems largely from riming of snow by collection of cloud droplets. The significant reduction in ERFaci does not occur without prognostic snow, which contributes mainly by buffering the cloud response to aerosol perturbations through depleting cloud water via collection. Prognostic precipitation also alters the regional pattern of ERFaci, particularly over northern midlatitudes where snow is abundant. The treatment of precipitation is thus a highly influential controlling factor of ERFaci, contributing more than other uncertain “tunable” processes related to aerosol–cloud–precipitation interactions. This change in ERFaci caused by the treatment of precipitation is large enough to explain the existing difference in ERFaci between GCMs and observations.


2020 ◽  
Vol 21 (11) ◽  
pp. 2675-2690
Author(s):  
Wonbae Bang ◽  
GyuWon Lee ◽  
Alexander Ryzhkov ◽  
Terry Schuur ◽  
Kyo-Sun Sunny Lim

AbstractDifferences in atmospheric environments can have a significant impact on microphysical processes of precipitation. Dominant warm (cold) rain processes in East Asia (southern Great Plains of the United States) are implied by a large (small or constant) gradient of reflectivity at low levels in vertical reflectivity profiles. Long-term ground observations using two-dimensional video disdrometers were conducted in the southern Korean Peninsula (KOR) and Norman, Oklahoma, United States (OKL). Raindrop size distributions (RSD) and their moments in the two regions were analyzed in the framework of scaling normalized RSDs. Results show that the concentrations of small (big) raindrops were higher (smaller) in KOR than in OKL. KOR RSDs were also found to be characterized by relatively high characteristic number concentrations and small characteristic diameters when compared to OKL RSDs. The increases with increasing in both KOR and OKL at lower Z with the opposite trend at higher Z. In addition, OKL RSDs with indicate the existence of an equilibrium between coalescence and breakup processes. Rainfall estimation relationships between the rain rate R and radar variables were retrieved from scattering simulations at S-, C-, and X-band wavelengths. KOR RSDs showed relatively small horizontal reflectivity and specific differential phase shift at the same R and same wavelength when compared to OKL RSDs. The regional dependency was significant due to the different microphysical process in KOR and OKL. The specific attenuation of KOR was, however, similar to that of OKL only at S band, indicating an advantage of using specific attenuation in S band in rainfall estimation.


Geofizika ◽  
2020 ◽  
Vol 37 (1) ◽  
pp. 45-66 ◽  
Author(s):  
Jiangnan Li ◽  
Youlong Chen ◽  
Wenshi Lin ◽  
Fangzhou Li ◽  
Chenghui Ding

Three simulation experiments were conducted on Typhoon (TC) “Sarika” (2016) using the WRF model, different effects of the latent heat in planetary boundary layer and cloud microphysical process on the TC were investigated. The control experiment well simulated the changes in TC track and intensity. The latent heat in planetary boundary layer or cloud microphysics process can affect the TC track and moving speed. Latent heat affects the TC strength by affecting the TC structure. Compared with the CTL experiment, both the NBL experiment and the NMP experiment show weakening in dynamics and thermodynamics characteristics of TC. Without the effect of latent heat, the TC cannot develop upwards and thus weakens in its intensity and reduces in precipitation; this weakening effect appears to be more obvious in the case of closing the latent heat in planetary boundary layer. The latent heat in planetary boundary layer mainly influences the generation and development of TC during the beginning stage, whereas the latent heat in cloud microphysical process is conducive to the strengthen and maintenance of TC in the mature stage. The latent heat energy of the cloud microphysical process in the TC core region is an order of magnitude larger than the surface enthalpy. But the latent heat release of cloud microphysical processes is not the most critical factor for TC enhancement, while the energy transfer of boundary layer processes is more important.


Sign in / Sign up

Export Citation Format

Share Document