scholarly journals Status Assessment of Agricultural Drainage Ditches

2018 ◽  
Vol 61 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Daniel Avilés ◽  
Ingrid Wesström ◽  
Abraham Joel

Abstract. Poor maintenance, environmental concerns, land use changes, and adaptation to climate change are creating a growing need for better agricultural drainage. The objectives of this study were to identify ditch properties that can be evaluated visually on-site and related soil erosion processes, and to define parameters requiring more intensive study and estimate these using simplified methods. The study included surveys of ditches in various soils using MADRAS (Minnesota Agricultural Ditch Research Assessment for Stability) to classify ditch status. To explain why some ditch segments were in poor condition, additional field and laboratory studies were carried out. Soil samples were taken for analysis of particle size distribution, unsaturated direct shear strength, and critical stress for erosion. The HEC-RAS data model was used for simulation of hydraulic forces acting at different flow rates. Digital maps of land use in the catchment area in different years were used to estimate changes in runoff conditions over time. MADRAS proved to be a suitable tool for rapid assessment of stability problems in ditches. The HEC-RAS simulations were a good complement to MADRAS in assessing how changes in land use affected the hydraulic load and in highlighting bottlenecks in the system. However, the hydraulic load did not adequately explain the degree of degradation in some ditch segments. Measurements of soil shear strength were a good aid to understanding existing degradation. Thus, assessment of soil erodibility and bank stability is essential in anticipating the risk of future erosion processes in ditches. Keywords: Cohesive strength meter, HEC-RAS, MADRAS, Unsaturated direct shear strength.

Biodiversity ◽  
2020 ◽  
pp. 1-11
Author(s):  
Carina I. Argañaraz ◽  
Gonzalo D. Rubio ◽  
Martina Rubio ◽  
Fabiana Castellarini

2017 ◽  
Vol 21 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Antonio Hayas ◽  
Tom Vanwalleghem ◽  
Ana Laguna ◽  
Adolfo Peña ◽  
Juan V. Giráldez

Abstract. Gully erosion is an important erosive process in Mediterranean basins. However, the long-term dynamics of gully networks and the variations in sediment production in gullies are not well known. Available studies are often conducted only over a few years, while many gully networks form, grow, and change in response to environmental and land use or management changes over a long period. In order to clarify the effect of these changes, it is important to analyse the evolution of the gully network with a high temporal resolution. This study aims at analysing gully morphodynamics over a long timescale (1956–2013) in a large Mediterranean area in order to quantify gully erosion processes and their contribution to overall sediment dynamics. A gully network of 20 km2 located in southwestern Spain has been analysed using a sequence of 10 aerial photographs in the period 1956–2013. The extension of the gully network both increased and decreased in the study period. Gully drainage density varied between 1.93 km km−2 in 1956, a minimum of 1.37 km km−2 in 1980, and a maximum of 5.40 km km−2 in 2013. The main controlling factor of gully activity appeared to be rainfall. Land use changes were found to have only a secondary effect. A new Monte Carlo-based approach was proposed to reconstruct gully erosion rates from orthophotos. Gully erosion rates were found to be relatively stable between 1956 and 2009, with a mean value of 11.2 t ha−1 yr−1. In the period 2009–2011, characterized by severe winter rainfalls, this value increased significantly to 591 t ha−1 yr−1. These results show that gully erosion rates are highly variable and that a simple interpolation between the starting and ending dates greatly underestimates gully contribution during certain years, such as, for example, between 2009 and 2011. This illustrates the importance of the methodology applied using a high temporal resolution of orthophotos.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1234
Author(s):  
Viera Petlušová ◽  
Peter Petluš ◽  
Michal Ševčík ◽  
Juraj Hreško

The water erosion research was carried out in the lowland type of hilly landscape. The aim was to monitor and evaluate the importance of environmental factors (steepness of slope, relief shapes, aspect, slope length, combination slope length (L) and slope (S)—LS factor, types of land use changes) for the development of water erosion. We focused on the identification of areas threatened by erosion by interpreting aerial photographs from several time periods. This was followed by verification of erosion using soil probes. We identified 408.44 ha of areas affected by erosion, and measured the depth of soil and “A” horizons thickness. The environmental factors were modeled in geographical information systems by tools for spatially oriented data. Subsequently, the influence and significance of individual environmental factors were compared, and the probability of erosion was statistically estimated. The decisive factors in the formation of erosive surfaces are the LS factor and the slope. We also consider the factor of the relief shape to be important. The shape did not appear to be very significant as a separately evaluated factor, but all convex parts correlate with the identified erosion surfaces. The susceptibility of erosion related to the aspect of the slopes to the cardinal directions has not been confirmed. Types of land use changes with the most significant relation of erosion were confirmed in areas of strong intensification. We confirmed the importance of factors and land use for the development of erosion processes.


2015 ◽  
Vol 538 ◽  
pp. 64-77 ◽  
Author(s):  
D. Serpa ◽  
J.P. Nunes ◽  
J. Santos ◽  
E. Sampaio ◽  
R. Jacinto ◽  
...  

2016 ◽  
Author(s):  
Antonio Hayas ◽  
Tom Vanwalleghem ◽  
Ana Laguna ◽  
Adolfo Peña ◽  
Juan V. Giráldez

Abstract. Gully erosion is an important erosive process, especially in Mediterranean basins. However, the longterm dynamics of gully networks and the variation of sediment production in gullies is not well known. Available studies are often done over a few years only, while many gully networks form, grow, and change in response to environmental and land use or management changes over a long period. In order to clarify the effect of these changes, it is important to analyze the evolution of the gully network with a high temporal resolution. This study aims at analyzing gully morphodynamics over a long time scale (1956–2013) in a large Mediterranean area in order to quantify gully erosion processes and its contribution to overall sediment dynamics. A gully network of 20 km2 located in SW Spain, has been analyzed using a sequence of 10 aerial photographs in the period 1956–2013. The extension of the gully network both increased and decreased in the study period. Gully drainage density varied between 1.93 km km−2 in 1956, with a minimum of 1.37 km km−2 in 1980 and a maximum of 5.40 km km−2 in 2013. The main controlling factor of gully activity appeared to be rainfall, while land use changes were found to have only an indirect effect. A new Monte Carlo-based approach was proposed to reconstruct gully erosion rates from orthophotos. Gully erosion rates were found to be relatively stable between 1956–2009, with a mean value of 11.2 ton ha−1 yr−1, while in the period 2009–2011, characterized by extreme winter rainfalls, this value increased significantly, to 591 ton ha−1 yr−1. These results show that gully erosion rates are highly variable and that a simple interpolation between the start and end date would highly underestimate gully contribution during certain years, such as for example between 2009–2011. This illustrates the importance of the applied methodology using a high temporal resolution of orthophotos.


2021 ◽  
Author(s):  
Eric Vaz ◽  
Lisa Bowman

Urban growth has had unprecedented consequences on environmental sustainability and anthropogenic activity. The eroding coastlines throughout the world are subject to the massive expansion of urban areas and the accountability of sustainable hinterland landscapes. The Golden Horseshoe is Canada’s fastest growing region extending from the Niagara Peninsula and one of the most active economic regions in North America. This paper adopts a combined assessment of land use change and transitions in the coastal stretches of the Greater Golden Horseshoe. Comprising the urban expansion of the region between 1990 and 2011, an integrated assessment was carried out to: (i) detect changes in coastal lines along Lake Ontario; (ii) derive land use changes along the coast through spatial accounting matrices; and (iii) integrate climate change data for a combined assessment of future erosion loci. Visible erosion was found between the decade of 1990 and 2000, while certain areas have shown coastal recession in the southern region. The maximum recession was found to be 30 m, with an increasing urban sprawl of 19.8% between 1990 and 2000. A combined temperature increase of 2 °C over the coming decades brings the increase in urban heat islands leading to the importance of combined land policies to mitigate the common problem of erosion in vulnerable urban stretches and liveability concerning spatial resilience of growing urban regions in North America.


2017 ◽  
Vol 21 (10) ◽  
pp. 5065-5088 ◽  
Author(s):  
Sara A. Kelly ◽  
Zeinab Takbiri ◽  
Patrick Belmont ◽  
Efi Foufoula-Georgiou

Abstract. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.


2020 ◽  
Vol 79 (15) ◽  
Author(s):  
Qiongfang Li ◽  
Guobin Lu ◽  
Xingye Han ◽  
Zhengmo Zhou ◽  
Tianshan Zeng ◽  
...  

2017 ◽  
Author(s):  
Sara A. Kelly ◽  
Zeinab Takbiri ◽  
Patrick Belmont ◽  
Efi Foufoula-Georgiou

Abstract. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23,000–69,000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30 %–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.


2021 ◽  
Author(s):  
Eric Vaz ◽  
Lisa Bowman

Urban growth has had unprecedented consequences on environmental sustainability and anthropogenic activity. The eroding coastlines throughout the world are subject to the massive expansion of urban areas and the accountability of sustainable hinterland landscapes. The Golden Horseshoe is Canada’s fastest growing region extending from the Niagara Peninsula and one of the most active economic regions in North America. This paper adopts a combined assessment of land use change and transitions in the coastal stretches of the Greater Golden Horseshoe. Comprising the urban expansion of the region between 1990 and 2011, an integrated assessment was carried out to: (i) detect changes in coastal lines along Lake Ontario; (ii) derive land use changes along the coast through spatial accounting matrices; and (iii) integrate climate change data for a combined assessment of future erosion loci. Visible erosion was found between the decade of 1990 and 2000, while certain areas have shown coastal recession in the southern region. The maximum recession was found to be 30 m, with an increasing urban sprawl of 19.8% between 1990 and 2000. A combined temperature increase of 2 °C over the coming decades brings the increase in urban heat islands leading to the importance of combined land policies to mitigate the common problem of erosion in vulnerable urban stretches and liveability concerning spatial resilience of growing urban regions in North America.


Sign in / Sign up

Export Citation Format

Share Document