Impact of Heavy Rainfalls on Global Nutrients export During the Fertilization Period in a Coastal Agricultural Watershed

1993 ◽  
Vol 28 (3-5) ◽  
pp. 441-449 ◽  
Author(s):  
Paul J. Garrison ◽  
Timothy R. Asplund

Nonpoint source controls were installed in a 1215 ha agricultural watershed in northeastern Wisconsin in the late 1970. Changes were made in handling of animal wastes and cropping practices to reduce runoff of sediment and nutrients. Modelling results predicted a reduction in phosphorus runoff of 30 percent. The water quality of White Clay Lake has worsened since the installation of NPS controls. The lake's phosphorus concentration has increased from a mean of 29 µg L−1 in the late 1970s to 44 µg L−1 in recent years. Water clarity has declined from 2.7 to 2.1 m and the mean summer chlorophyll levels have increased from 9 to 13 µg L−1 with peak values exceeding 40 µg L−1. Increased phosphorus loading is not the result of elevated precipitation but instead the failure of the control measures to sufficiently reduce P loading. Most of the effort was placed on structural changes while most of the P loading comes from cropland runoff. Further, soil phosphorus concentrations have increased because of artificial fertilizers and manure spreading. The White Clay Lake experience is discouraging since the majority of the polluters in this watershed utilized some NPS control practices, including 76 percent of the farms which installed waste management control facilities.


1998 ◽  
Vol 38 (10) ◽  
pp. 207-214 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dhong Il Jung ◽  
Cho Hee Yoon

Runoff loads of pollutant in agricultural watersheds were spatially analyzed by using geographic information system(GIS) technology. The topological relationship between pollution sources in the watershed was, first of all, identified by using the developed digital map of land use and then the pollutant loads generated from each source was estimated by applying a conventional unit loading factor on the obtained digital information of pollution sources. To evaluate the loads delivered from spatially distributed pollution sources to monitoring stations in down stream via surface of watershed, a renovated empirical model incorporated with the information of pollutant discharge path was developed through introducing a digital terrain model(DTM) technique. In this model, the function of degradation of pollution loads during delivery process was simplified so that each watershed could have a basin-wide self-purification capacity which would be considered to be possessed inherently in each watershed and could retard the discharge of pollutants from sources generated to stream water. Model credibility showed good consistency with comparing the simulated values with observed data. Monte Carlo optimizing technique made it possible to estimate the basin-wide self-purification coefficients.


2018 ◽  
Author(s):  
Brian W. Redder ◽  
◽  
Elizabeth W. Boyer ◽  
Tony Buda ◽  
Casey D. Kennedy ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


Sign in / Sign up

Export Citation Format

Share Document