A renovated model for spatial analysis of pollutant runoff loads in agricultural watershed
Runoff loads of pollutant in agricultural watersheds were spatially analyzed by using geographic information system(GIS) technology. The topological relationship between pollution sources in the watershed was, first of all, identified by using the developed digital map of land use and then the pollutant loads generated from each source was estimated by applying a conventional unit loading factor on the obtained digital information of pollution sources. To evaluate the loads delivered from spatially distributed pollution sources to monitoring stations in down stream via surface of watershed, a renovated empirical model incorporated with the information of pollutant discharge path was developed through introducing a digital terrain model(DTM) technique. In this model, the function of degradation of pollution loads during delivery process was simplified so that each watershed could have a basin-wide self-purification capacity which would be considered to be possessed inherently in each watershed and could retard the discharge of pollutants from sources generated to stream water. Model credibility showed good consistency with comparing the simulated values with observed data. Monte Carlo optimizing technique made it possible to estimate the basin-wide self-purification coefficients.