scholarly journals Improved Accuracy of Riparian Zone Mapping Using Near Ground Unmanned Aerial Vehicle and Photogrammetry Method

2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.

2021 ◽  
Vol 13 (17) ◽  
pp. 3380 ◽  
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

Defining stream channels in a watershed is important for assessing freshwater habitat availability, complexity, and quality. However, mapping channels of small tributary streams becomes challenging due to frequent channel change and dense vegetation coverage. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to obtain a 3D Digital Surface Model (DSM) to estimate the total in-stream channel and channel width within grazed riparian pastures. We used two methods to predict the stream channel boundary: the Slope Gradient (SG) and Vertical Slope Position (VSP). As a comparison, the same methods were also applied using low-resolution DEM, obtained with traditional photogrammetry (coarse resolution) and two more LiDAR-derived DEMs with different resolution. When using the SG method, the higher-resolution, UAV-derived DEM provided the best agreement with the field-validated area followed by the high-resolution LiDAR DEM, with Mean Squared Errors (MSE) of 1.81 m and 1.91 m, respectively. The LiDAR DEM collected at low resolution was able to predict the stream channel with a MSE of 3.33 m. Finally, the coarse DEM did not perform accurately and the MSE obtained was 26.76 m. On the other hand, when the VSP method was used we found that low-resolution LiDAR DEM performed the best followed by high-resolution LiDAR, with MSE values of 9.70 and 11.45 m, respectively. The MSE for the UAV-derived DEM was 15.12 m and for the coarse DEM was 20.78 m. We found that the UAV-derived DEM could be used to identify steep bank which could be used for mapping the hydrogeomorphology of lower order streams. Therefore, UAVs could be applied to efficiently map small stream channels in order to monitor the dynamic changes occurring in these ecosystems at a local scale. However, the VSP method should be used to map stream channels in small watersheds when high resolution DEM data is not available.


2020 ◽  
Vol 8 (3) ◽  
pp. 224-244
Author(s):  
Lucas Moreira Furlan ◽  
Vania Rosolen ◽  
Jepherson Salles ◽  
César Augusto Moreira ◽  
Manuel Eduardo Ferreira ◽  
...  

Human pressure on the water resources provided by natural isolated wetlands has intensified in Brazil due to an increase in agricultural land equipped with irrigation. However, the amount of water stored in these areas and its contribution to aquifer recharge is unknown. This study aimed to quantify the amount of water that can be retained in a natural wetland and to propose a model of groundwater recharge. We used remote sensing techniques involving unmanned aerial vehicle to map the wetland and highlight its internal morphology, using a red–green–blue orthomosaic and a digital surface model. The 2-D inversion and a pseudo-3-D model from electrical resistivity tomography data were used to visualize the subsurface structures and hydrologic flow paths. The wetland is a reservoir storing up to 416.996 m3 of water during the rainy months. Distinct internal compartments characterize the wetland topography and different water-volume storage, lower in the border and higher in the center. A leakage point connects surface water to groundwater through direct vertical flow, which constitutes the aquifer recharge zone. Remotely sensed very high-resolution images allied with geophysical techniques allowed complete surface and subsurface imaging and offered visual tools that contributed to understanding the hydrodynamics of the wetland.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2017 ◽  
Vol 14 (23) ◽  
pp. 5533-5549 ◽  
Author(s):  
Marinka E. B. van Puijenbroek ◽  
Corjan Nolet ◽  
Alma V. de Groot ◽  
Juha M. Suomalainen ◽  
Michel J. P. M. Riksen ◽  
...  

Abstract. Dune development along highly dynamic land–sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m−3) week−1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.


2019 ◽  
Vol 9 (22) ◽  
pp. 4954
Author(s):  
Yuanrong He ◽  
Weiwei Ma ◽  
Zelong Ma ◽  
Wenjie Fu ◽  
Chihcheng Chen ◽  
...  

In this research, we investigated using unmanned aerial vehicle (UAV) photographic technology to prevent the further expansion of unauthorized construction and thereby reduce postdisaster losses. First, UAV dynamic aerial photography was used to obtain dynamic digital surface model (DSM) data and elevation changes of 2–8 m as the initial sieve target. Then, two periods of dynamic orthophoto images were superimposed for human–computer interaction interpretation, so we could quickly distinguish buildings undergoing expansion, new construction, or demolition. At the same time, mobile geographic information system (GIS) software was used to survey the field, and the information gathered was developed to support unauthorized construction detection. Finally, aerial images, interpretation results, and ground survey information were integrated and released on WebGIS to build a regulatory platform that can achieve accurate management and effectively prevent violations.


Author(s):  
Muhammad Farhan Zolkepli Et.al

This paper discusses the applications of unmanned aerial vehicle (UAV) for slope mapping and also its important parameters including perimeter, area and also volume of certain selected area. With the development of modern technology, the utilization of UAV to gather data for slope mapping becoming easier as it is quick, reliable, precise, cost-effective and also easily to operate. Modern UAV able to take high quality image which essential for the effectiveness and nature of normal mapping output such as Digital Surface Model (DSM) and Digital Orthophoto. This photo captured by UAV will later transfer to commercial software to generate full map of study area. With the help of established software, the measurement of selected study areas can be determined easily which can be considered as the main interest in this study. In addition, another outcome of this study is, this modern method of mapping will be compare to traditional method of mapping which proven to be more effective in term of low costing, low time consuming, can gather huge amount of data within short period of time, low man power needed and almost no potential risk of hazardous effect to man.


2017 ◽  
Author(s):  
Marinka E. B. van Puijenbroek ◽  
Corjan Nolet ◽  
Alma V. de Groot ◽  
Juha M. Suomalainen ◽  
Michel J. P. M. Riksen ◽  
...  

Abstract. Dune development along highly dynamic land-sea boundaries is the results of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of dune development under a changing climate, but has proven difficult due to scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural dune field of 8 hectares, along the coast of the island Texel, the Netherlands, for one year using an Unmanned Aerial Vehicle (UAV) with camera. After constructing a Digital Surface Model and orthomosaic we derived for each dune 1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), 2) dune size (dune volume, area, and maximum height), 3) degree of shelter (proximity to other dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume than sheltered dunes over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density. The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.


Sign in / Sign up

Export Citation Format

Share Document