scholarly journals Time Lag-Based Modelling for Software Vulnerability Exploitation Process

Author(s):  
Adarsh Anand ◽  
Navneet Bhatt ◽  
Jasmine Kaur ◽  
Yoshinobu Tamura

With the increase in the discovery of vulnerabilities, the expected exploits occurred in various software platform has shown an increased growth with respect to time. Only after being discovered, the potential vulnerabilities might be exploited. There exists a finite time lag in the exploitation process; from the moment the hackers get information about the discovery of a vulnerability and the time required in the final exploitation. By making use of the time lag approach, we have developed a framework for the vulnerability exploitation process that occurred in multiple stages. The time lag between the discovery and exploitation of a vulnerability has been bridged via the memory kernel function over a finite time interval. The applicability of the proposed model has been validated using various software exploit datasets.

2004 ◽  
Vol 41 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Zvetan G. Ignatov ◽  
Vladimir K. Kaishev

An explicit formula for the probability of nonruin of an insurance company in a finite time interval is derived, assuming Poisson claim arrivals, any continuous joint distribution of the claim amounts and any nonnegative, increasing real function representing its premium income. The formula is compact and expresses the nonruin probability in terms of Appell polynomials. An example, illustrating its numerical convenience, is also given in the case of inverted Dirichlet-distributed claims and a linearly increasing premium-income function.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


2011 ◽  
Vol 34 (7) ◽  
pp. 841-849 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

In this paper we study the robust control problems with respect to the finite-time interval of uncertain non-linear Markov jump systems. By means of Takagi–Sugeno fuzzy models, the overall closed-loop fuzzy dynamics are constructed through selected membership functions. By using the stochastic Lyapunov–Krasovskii functional approach, a sufficient condition is firstly established on the stochastic robust finite-time stabilization. Then, in terms of linear matrix inequalities techniques, the sufficient conditions on the existence of the stochastic finite-time controller are presented and proved. Finally, the design problem is formulated as an optimization one. The simulation results illustrate the effectiveness of the proposed approaches.


Optik ◽  
2019 ◽  
Vol 181 ◽  
pp. 404-407 ◽  
Author(s):  
Fatemeh Ahmadinouri ◽  
Mehdi Hosseini ◽  
Farrokh Sarreshtedari

Sign in / Sign up

Export Citation Format

Share Document