On robust controllability of uncertain non-linear jump systems with respect to the finite-time interval

2011 ◽  
Vol 34 (7) ◽  
pp. 841-849 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

In this paper we study the robust control problems with respect to the finite-time interval of uncertain non-linear Markov jump systems. By means of Takagi–Sugeno fuzzy models, the overall closed-loop fuzzy dynamics are constructed through selected membership functions. By using the stochastic Lyapunov–Krasovskii functional approach, a sufficient condition is firstly established on the stochastic robust finite-time stabilization. Then, in terms of linear matrix inequalities techniques, the sufficient conditions on the existence of the stochastic finite-time controller are presented and proved. Finally, the design problem is formulated as an optimization one. The simulation results illustrate the effectiveness of the proposed approaches.

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Shuping He ◽  
Fei Liu

This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. TheL2-L∞filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuationγfor all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.


Author(s):  
Shuping He ◽  
Fei Liu

The stochastic finite-time stabilization problem is considered for a class of linear uncertain Markov jump systems that possess randomly jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. By using the appropriate stochastic Lyapunov–Krasovskii functional approach, sufficient conditions are proposed for the design of stochastic finite-time stabilization controller. The stabilization criteria are formulated in the form of linear matrix inequalities and the designed finite-time stabilization controller is described as an optimization one. The designed finite-time stabilized controller makes the stochastic MJSs stochastic finite-time bounded and stochastic finite-time stabilizable for all admissible unknown external disturbances and uncertain parameters. Simulation results illustrate the effectiveness of the developed approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Bo Li ◽  
Junjie Zhao

This paper investigates the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. The finite-timeH∞controller via state feedback is designed to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic control performance of discrete-time Markov jump systems are derived in the form of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shuping He

This paper studies the resilient - filtering problem for a class of uncertain Markovian jumping systems within the finite-time interval. The objective is to design such a resilient filter that the finite-time - gain from the unknown input to an estimation error is minimized or guaranteed to be less than or equal to a prescribed value. Based on the selected Lyapunov-Krasovskii functional, sufficient conditions are obtained for the existence of the desired resilient - filter which also guarantees the stochastic finite-time boundedness of the filtering error dynamic systems. In terms of linear matrix inequalities (LMIs) techniques, the sufficient condition on the existence of finite-time resilient - filter is presented and proved. The filter matrices can be solved directly by using the existing LMIs optimization techniques. A numerical example is given at last to illustrate the effectiveness of the proposed approach.


Author(s):  
Xiao-li Luan ◽  
Fei Liu ◽  
Peng Shi

In this paper, the problem of finite-time stabilization for a class of uncertain Markov jump systems with partially known transition probabilities is investigated. The main aim of this paper is to derive the finite-time stabilization criteria for the underlying systems when the transition probabilities are partially known and to design a state feedback stabilizing controller such that the trajectories of the system stay within a given bound in a fixed time interval. Sufficient conditions for the existence of the desired controller are established with the linear matrix inequalities framework. A numerical example is used to illustrate the effectiveness of the developed theoretic results.


Author(s):  
Chao Ma ◽  
Liziyi Hao ◽  
Hang Fu

AbstractThis paper investigates the drive-response synchronization problem of Takagi–Sugeno fuzzy hidden Markov jump complex dynamical networks. More precisely, a novel asynchronous synchronization control strategy is developed for coping with mismatched hidden jumping modes. Furthermore, the neural network is adopted with online learning laws for unknown function approximation. By taking advantage of Lyapunov method, sufficient conditions are established to ensure mean-square synchronization performance with disturbances. Based on the synchronization criterion, asynchronous controller gains are designed in terms of linear matrix inequalities. An illustrative example is finally given to validate the effectiveness of the proposed synchronization techniques.


Sign in / Sign up

Export Citation Format

Share Document