scholarly journals Ratio in Ratio Type Exponential Strategy for the Estimation of Population Mean

Author(s):  
Anurag Gupta ◽  
Rajesh Tailor

This paper is an attempt to develop an estimator for finite population mean. Motivated by Kiregyera (1984), a ratio in ratio type exponential strategy is developed for estimation of population mean in double sampling for stratification. To compare with relevant considered estimators, expressions for bias and mean squared error of the developed estimator have been derived. The developed estimator has been compared with usual unbiased estimator, Ige and Tripathi (1987), ratio estimator and ratio type exponential estimator given by Tailor et al (2014) theoretically as well as empirically.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2021 ◽  
Vol 4 (2) ◽  
pp. 41-51
Author(s):  
A.E. Anieting ◽  
E. I. Enang ◽  
C. E. Onwukwe

A modified form of the population mean estimator suggested by Anieting and Enang (2020) in stratified double sampling in the presence of nonresponse using a single auxiliary variable has been proposed. The Mean Squared Error (MSE) and the bias of the proposed estimator have been given using large sample approximation. The empirical study shows that the MSE of the suggested estimator is more efficient than all other existing estimators in the same scheme. Determination of the optimal values of the first and second phases samples has also been done


Author(s):  
Housila Prasad Singh ◽  
Pragati Nigam

In this paper we have considered the problem of estimating the population mean using auxiliary information in sample surveys. A class of dual to ratio estimators has been defined. Exact expressions for bias and mean squared error of the suggested class of dual to ratio estimator have been obtained. In particular, properties of some members of the proposed class of dual to ratio estimators have been discussed. It has been shown that the proposed class of estimators is more efficient than the sample mean, ratio estimator, dual to ratio estimator and some members of the suggested class of estimators in some realistic conditions. Some numerical illustrations are given in support of the present study.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nelson Kiprono Bii ◽  
Christopher Ouma Onyango ◽  
John Odhiambo

Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at 95% coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.


Author(s):  
Priya Mehta ◽  
Rajesh Tailor

This paper discusses chain ratio type estimator for estimation of population mean in double sampling. The developed estimator uses two auxiliary variates associated with study variate in order to increases its efficiency. The developed estimator has been compared with usual unbiased estimator and other existing estimators. The expression for the bias and mean squared error of the developed estimator is obtained under large sample approximation. We have considered the natural population data set to examine the merits of the developed estimator and carried out the empirical study in support of theoretical findings. Numerical illustration shows that the proposed estimator is more efficient.


2020 ◽  
Vol 8 (2) ◽  
pp. 49-56
Author(s):  
Akan Anieting

In this article, a new estimator for population mean in two-phase stratified sampling in the presence of nonresponse using single auxiliary variable has been proposed. The bias and Mean Squared Error (MSE) of the proposed estimator has been given using large sample approximation. The empirical study shows that the MSE of the proposed estimator is more efficient than existing estimators. The optimum values of first and second phase sample have been determined.


2014 ◽  
Vol 1 ◽  
pp. 15-21
Author(s):  
H.S. Jhajj ◽  
Kusam Lata

Using auxiliary information, a family of difference-cum-exponential type estimators for estimating the population variance of variable under study have been proposed under double sampling design. Expressions for bias, mean squared error and its minimum values have been obtained. The comparisons have been made with the regression-type estimator by using simple random sampling at both occasions in double sampling design. It has also been shown that better estimators can be obtained from the proposed family of estimators which are more efficient than the linear regression type estimator. Results have also been illustrated numerically as well asgraphically.


Sign in / Sign up

Export Citation Format

Share Document