scholarly journals Biodecolorization of methyl orange by mixed cultures of brown-rot fungus Daedalea dickinsii and bacterium Pseudomonas aeruginosa

Author(s):  
Adi Setyo Purnomo ◽  
Mitha Ocdyani Mawaddah

Abstract. Purnomo AS, Mawaddah MO. 2020. Biodecolorization of methyl orange by mixed cultures of brown-rot fungus Daedalea dickinsii and bacterium Pseudomonas aeruginosa. Biodiversitas 21: 2297-2302. This study investigated on the decolorization of methyl orange (MO) by mixed cultures of brown-rot fungus (BRF) Daedalea dickinsii and bacterium Pseudomonas aeruginosa. P. aeruginosa was added into D. dickinsii culture at 2, 4, 6, 8, 10 mL (1 mL = 5.05 × 1012 CFU). All of mixed cultures had ability to decolorize MO (final concentration 100 mg/L) in potato dextrose broth (PDB) medium for 7 days incubation. The addition of 4 mL of P. aeruginosa showed the highest MO biodecolorization approximately 97,99%, while by D. dickinsii only was 67,54%. C15H19N3O5S; C16H21N3O5S; C17H23N3O6S; and C15H19N3O6S were identified as MO metabolites. This study indicated that mixed cultures of D. dickinsii and P. aeruginosa have great potential for high efficiency, fast and cheap dye wastewater treatment.

2018 ◽  
Vol 18 (1) ◽  
pp. 75 ◽  
Author(s):  
Atmira Sariwati ◽  
Adi Setyo Purnomo

Effect of addition of Pseudomonas aeruginosa on 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation by Fomitopsis pinicola had been investigated. P. aeruginosa was added into F. pinicola culture at 1, 3, 5, 7 and 10 mL (1 mL ≈ 1.53 x 109 P. aeruginosa bacteria cells/mL culture). The addition of 10 mL of P. aeruginosa showed the highest DDT biodegradation approximately 68% during 7 days incubation in Potato Dextrose Broth (PDB) medium, which was higher than biodegradation of DDT by F. pinicola only (42%) at the same incubation time. 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU) were detected as metabolites from DDT biodegradation by mixed cultures of F. pinicola and P. aeruginosa.


2021 ◽  
Author(s):  
Adi Setyo Purnomo ◽  
Alya Awinatul Rohmah ◽  
Hamdan Dwi Rizqi ◽  
Herdayanto Sulistyo Putro ◽  
Refdinal Nawfa

2020 ◽  
Author(s):  
Adi Setyo Purnomo ◽  
Nur Elis Agustina Andyani ◽  
Refdinal Nawfa ◽  
Surya Rosa Putra

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


Sign in / Sign up

Export Citation Format

Share Document