Biodecolorization of methylene blue by mixed cultures of brown-rot fungus Gloeophyllum trabeum and bacterium Bacillus subtilis

2021 ◽  
Author(s):  
Adi Setyo Purnomo ◽  
Alya Awinatul Rohmah ◽  
Hamdan Dwi Rizqi ◽  
Herdayanto Sulistyo Putro ◽  
Refdinal Nawfa
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Naomi Shimokawa-Chiba ◽  
Claudia Müller ◽  
Keigo Fujiwara ◽  
Bertrand Beckert ◽  
Koreaki Ito ◽  
...  

AbstractRescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Heterocycles ◽  
2013 ◽  
Vol 87 (2) ◽  
pp. 307 ◽  
Author(s):  
Hee Jae Shin ◽  
Fakir Shahidullah Tareq ◽  
Ji Hye Kim ◽  
Min Ah Lee ◽  
Hyi-Seung Lee ◽  
...  

2015 ◽  
Vol 80 (12) ◽  
pp. 1589-1597 ◽  
Author(s):  
L. S. Khailova ◽  
P. A. Nazarov ◽  
N. V. Sumbatyan ◽  
G. A. Korshunova ◽  
T. I. Rokitskaya ◽  
...  

2004 ◽  
Vol 21 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Patricia A. Maurice ◽  
Maciej Manecki ◽  
Jeremy B. Fein ◽  
Jennifer Schaefer

2016 ◽  
Vol 82 (22) ◽  
pp. 6557-6572 ◽  
Author(s):  
Yuka Kojima ◽  
Anikó Várnai ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Dejan M. Petrovic ◽  
...  

ABSTRACTFungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such asGloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome ofG. trabeumencodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants ofGtLPMO9A seem to be produced, a single-domain variant,GtLPMO9A-1, and a longer variant,GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinctGtLPMO9A-2 inPichia pastorisand investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed thatGtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs,GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action ofGtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO,NcLPMO9C fromNeurospora crassarevealed thatGtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity ofNcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities ofGtLPMO9A-2. These results provide insight into the LPMO potential ofG. trabeumand provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity.IMPORTANCECurrently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme,GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone.GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential ofGtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


2021 ◽  
Vol 9 (1) ◽  
pp. 18-26
Author(s):  
Ade Maria Ulfa ◽  
◽  
Nofita Nofita ◽  
Bangun Saras Sandi ◽  
◽  
...  

ABSTRACT Sweat is produced by the apocrine glands, if infected by bacteria that play a role in the decay process will certainly produce foot odor. Some of the bacteria that cause, including Staphylococcus epidermis, Corynebacterium acne and there is one bacterium that causes pungent foot odor that is Bacillus subtilis. Bacillus subtilis enzyme leucine dehydrogenase produced the highest, resulting in isovaleric acid foot odor. Lime peel (Citrus aurantifolia) has the potential to be developed for the antibacterial active ingredient of foot odor contained in tannins, alkaloids and flavonoids. Spray can be effective for inhibition of feet due to water fleas or bacterial infections. The purpose of this research is to test the inhibitory zone of the preparation of foot odor spray ethanol extract of lime peel (Citrus aurantifolia) with variations of gelling agent. Bacterial inhibition zone testing on extracts of lime peel spray preparations using the disc method. This test was carried out on spray with extract concentration of 0% extract base carbopol, 0% extract base HPMC, 0.2% extract base carbopol, 0.2% extract base HPMC, 0.4% extract base carbopol, 0.4% extract base HPMC and positive control with an average inhibition zone of 9,13 mm, 9,12 mm, 11,86 mm, 11,29 mm, 13,17 mm, 12,30 mm, 8,13 mm against the bacterium Bacillus subtilis. Antibacterial test results were analyzed using ONE WAY ANOVA, the results of statistical analysis on the preparation of lime peel extract showed a significant inhibition zone difference of 0.000 (P = <0.05) between all concentrations. Lime peel extract spray is effective in inhibiting the bacterium Bacillus subtilis. Key words: Sweat of foot odor, Lime skin (Citrus aurantifolia), Spray, bacteri Bacillus subtilis


Sign in / Sign up

Export Citation Format

Share Document