Abstract: Physical Modeling of an Irregular Strike-Slip Fault System and Similarities to the South American-Caribbean Plate Boundary

AAPG Bulletin ◽  
1998 ◽  
Vol 82 (1998) ◽  
Author(s):  
Jagiello, Keith and Jim Hornbeck
2020 ◽  
Author(s):  
Hector Perea ◽  
Eulàlia Gràcia ◽  
Stefanie Almeida ◽  
Laura Gómez de la Peña ◽  
Sara Martínez-Loriente ◽  
...  

<p>The NW-SE convergence (4-5 mm/yr) between the African and Eurasian plates controls the present-day crustal deformation in the Alboran Sea (westernmost Mediterranean). Although seismic activity is mainly characterized by low to moderate magnitude events, large and destructive earthquakes (I > IX) have occurred in this region (i.e., 1522 Almeria, 1790 Oran, 1910 Adra, 1994 and 2004 Al-Hoceima or 2016 Al-Idrissi earthquakes). The identification and the seismogenic characterization of the active structures in the Alboran Sea using ultra high-resolution (UHR) geophysical data is essential to evaluate better the exposure of the South Iberian Peninsula and North African coasts to related natural hazards (i.e., large earthquakes and related tsunamis and triggered landslides). During the SHAKE cruise, the Asterx and Idefx AUVs (Ifremer, france) were used to acquire UHR bathymetric (1m grid) and seismic (cm vertical resolution) data across the main active faults systems in the Alboran Sea with the aim to carry out sub-aqueous paleoseismological studies. One of the studied active structures has been the Yusuf Fault System (YFS), a dextral strike-slip system that is one of the largest structures in the Alboran Sea and a lithospheric boundary between different crustal domains: the East Alboran Basin to the north and the North African Margin to the south. It trends WNW-ESE, is ~150 km-long and can be divided into two main segments (W and E), producing the formation of a pull-apart basin where both overlap. The analysis of the UHR geophysical dataset reveals that in the imaged area this system is a complex structure composed by an array of strike-slip faults. Most of them reach up and offset the seafloor and the upper Pleistocene to Holocene sedimentary units. The results of the on-fault paleoseismological analyses reveal that the YFS may have generated at least 8 earthquakes in recent times. Although a detailed on-site geochronology is not available, a regional chronostratigraphic correlation have allowed estimating that the events have occurred during the last 200 ka, then providing an average recurrence interval of 27.5 ka. The estimated average vertical offset is about 0.64 m while the vertical slip-rate would be around 0.03 mm/yr. However, this value needs to be considered as a minimum since YFS is predominantly a strike-slip fault and the lateral slip will be much larger than the vertical one. According to different empirical relationships, the YFS could produce earthquakes above magnitude M<sub>w </sub>7.0. Finally, our results demonstrate that detailed geomorphological, active tectonic and paleoseismological studies are essential to reveal the present-day activity and to characterize the seismic behavior of the YFS, with crucial implications for seismic (and tsunami) hazard assessment in the surrounding coastal areas.</p>


2021 ◽  
Author(s):  
Alana Oliveira de Sa ◽  
Elia d’Acremont ◽  
Sylvie Leroy ◽  
Sara Lafuerza

<p>The northern border of the Caribbean plate is characterized by the oblique collision between the Caribbean and North American tectonic plates. Increasing obliquity of the collision between these two plates lead to complex strike-slip fault zones, which successively jump southward to accommodate the eastward escape of the Caribbean plate and the collisional indentation against the Bahama carbonate platform. The present-day Septentrional–Oriente Fault zone (SOFZ) defines the northern limit of the Caribbean plate, accommodating much of the obliquity of the convergence. Since its inception, at the end of the Oligocene, the current active style of the strike-slip boundary evolves over time. We focus our study on the Windward Passage area between the south-east of Cuba and the north-west of Haiti coast. Currently crossed by the SOFZ, the tectono-sedimentary framework of this large strait displays critical evidences to constrain the Neogene evolution of the northern boundary of the Caribbean plate. Based on seismic reflection and swath-bathymetric dataset we shed light on the structure and tectonic pattern of the Windward Passage. Our study provides structural and stratigraphic insights into relative timing of deformation along the Windward Passage and new elements to constrain the southeastward shift of the north Caribbean plate boundary until its present-day position. Contrasts in patterns of deformation on the Windward Passage area reveal a polyphase tectonic history of dominant strike-slip faulting impacted by the rate and obliquity variations of the convergence. Deformation phases recorded by the offshore sedimentary cover in the Windward Passage correlate well with the major paleogeographic reorganization episodes described onland (Late Eocene, Late Oligocene, Middle Miocene and Late Pliocene). A left-lateral shift of at least ~80 km is demonstrated by the restoration of the offset of the seismic units, estimating a Pliocene age for the onset of the SOFZ segments activity in this area.</p>


1995 ◽  
Vol 20 (2) ◽  
pp. 129-144 ◽  
Author(s):  
H. Drewes ◽  
K. Kaniuth ◽  
K. Stuber ◽  
H. Tremel ◽  
H.-G. Kahle ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
Richard Thomas Walker ◽  
Y. Bezmenov ◽  
G. Begenjev ◽  
S. Carolin ◽  
N. Dodds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document