Diagenetic Evolution of Clay Minerals in Oil-Bearing Neogene Sandstones and Associated Shales, Mahakam Delta Basin, Kalimantan, Indonesia

AAPG Bulletin ◽  
1999 ◽  
Vol 83 (1999) ◽  
Author(s):  
Norbert Clauer,2 Thierry Rinckenbac
Clay Minerals ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 535-548 ◽  
Author(s):  
J. Aróstegui ◽  
M. C. Zuluaga ◽  
F. Velasco ◽  
M. Ortega-Huertas ◽  
F. Nieto

AbstractX-ray diffraction was used to analyse the distribution of clay minerals in the <2 µm fraction of the lutitic and marly facies from the centre of the Basque-Cantabrian Basin (Basque Arc), where the sedimentary section is 2000 to 10,000 m thick. Most of the deposits were laid down during the Cretaceous and Paleogene and were related to the opening and closing of the Bay of Biscay. The most noteworthy variations are in kaolinite, smectite and mixed-layered (R = 0, R = 1 and R ≥ 3) illite-smectite, which can be ascribed both to provenance and to diagenesis. A general diminution in expandability is related to the gradual transformation of smectite to illite from south to north, and with depth. Temperature, residence time and chemical activity during diagenesis are the factors that had greatest influence on the changes in the original mineral assemblages inherited from the source area. On the basis of the clay minerals and the Kübler index, a general scheme is proposed for the diagenetic evolution of the area from the initial stages to anchimetamorphism.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiazong Du ◽  
Jingong Cai ◽  
Shengxiang Long ◽  
Bo Gao ◽  
Dongjun Feng ◽  
...  

The variation in mineral composition will affect the rock brittleness, thus the change of mineral assemblages during diagenesis has a potential control on the brittleness of mudstones. In this study, thin section, X-ray diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were used to investigate compositional and microscopic features of mudstones. With the enhancement of diagenesis, three mineral assemblages were divided due to the diagenetic evolution of minerals. Quartz, feldspar, dolomite, chlorite, and illite were regarded as brittle minerals and (quartz + feldspar + dolomite + illite + chlorite)/(detrital mineral + carbonate + clay mineral) was defined as the brittleness evaluation index The mudstone brittleness changed slightly during early diagenesis but increased gradually with enhancement of diagenesis in the late diagenesis stage. Quartz and feldspar were scattered above the clay matrix and the contact of grains was limited, therefore, the contribution of detrital minerals to the brittleness was affected by the properties of clay minerals. The diagenetic transformation of clay minerals resulted in the reduction of ductile components (smectite/I-Sm and kaolinite) and increase of brittle components (illite and chlorite), leading to the enhancement of integral rigidity of the mudstones. Meanwhile, the improved crystallization of carbonate in late diagenesis stage enlarged the carbonate grains which resulted in rigid contact between grains. These results highlighted the influence of diagenesis on mudstone brittleness. Therefore, for evaluation of mudstone brittleness, attention should be paid to the diagenesis process besides mineral composition.


Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


2018 ◽  
Vol 52 (4) ◽  
pp. 317-333 ◽  
Author(s):  
Jaeguk Jo ◽  
Toshiro Yamanaka ◽  
Tomoki Kashimura ◽  
Yusuke Okunishi ◽  
Yoshihiro Kuwahara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document