scholarly journals The Control of Diagenesis and Mineral Assemblages on Brittleness of Mudstones

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiazong Du ◽  
Jingong Cai ◽  
Shengxiang Long ◽  
Bo Gao ◽  
Dongjun Feng ◽  
...  

The variation in mineral composition will affect the rock brittleness, thus the change of mineral assemblages during diagenesis has a potential control on the brittleness of mudstones. In this study, thin section, X-ray diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were used to investigate compositional and microscopic features of mudstones. With the enhancement of diagenesis, three mineral assemblages were divided due to the diagenetic evolution of minerals. Quartz, feldspar, dolomite, chlorite, and illite were regarded as brittle minerals and (quartz + feldspar + dolomite + illite + chlorite)/(detrital mineral + carbonate + clay mineral) was defined as the brittleness evaluation index The mudstone brittleness changed slightly during early diagenesis but increased gradually with enhancement of diagenesis in the late diagenesis stage. Quartz and feldspar were scattered above the clay matrix and the contact of grains was limited, therefore, the contribution of detrital minerals to the brittleness was affected by the properties of clay minerals. The diagenetic transformation of clay minerals resulted in the reduction of ductile components (smectite/I-Sm and kaolinite) and increase of brittle components (illite and chlorite), leading to the enhancement of integral rigidity of the mudstones. Meanwhile, the improved crystallization of carbonate in late diagenesis stage enlarged the carbonate grains which resulted in rigid contact between grains. These results highlighted the influence of diagenesis on mudstone brittleness. Therefore, for evaluation of mudstone brittleness, attention should be paid to the diagenesis process besides mineral composition.

Clay Minerals ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 535-548 ◽  
Author(s):  
J. Aróstegui ◽  
M. C. Zuluaga ◽  
F. Velasco ◽  
M. Ortega-Huertas ◽  
F. Nieto

AbstractX-ray diffraction was used to analyse the distribution of clay minerals in the <2 µm fraction of the lutitic and marly facies from the centre of the Basque-Cantabrian Basin (Basque Arc), where the sedimentary section is 2000 to 10,000 m thick. Most of the deposits were laid down during the Cretaceous and Paleogene and were related to the opening and closing of the Bay of Biscay. The most noteworthy variations are in kaolinite, smectite and mixed-layered (R = 0, R = 1 and R ≥ 3) illite-smectite, which can be ascribed both to provenance and to diagenesis. A general diminution in expandability is related to the gradual transformation of smectite to illite from south to north, and with depth. Temperature, residence time and chemical activity during diagenesis are the factors that had greatest influence on the changes in the original mineral assemblages inherited from the source area. On the basis of the clay minerals and the Kübler index, a general scheme is proposed for the diagenetic evolution of the area from the initial stages to anchimetamorphism.


1984 ◽  
Vol 64 (4) ◽  
pp. 577-585 ◽  
Author(s):  
C. R. DE KIMPE ◽  
M. R. LAVERDIÈRE ◽  
P. LASALLE

A saprolite deposit and the overlying soil profile developed in a glacial diamicton were sampled near Mount Orford, Southern Quebec. The two materials differed mainly by the magnetic mineral and extractable Al contents, by the Fedithionite/Feoxalate ratio and by the mineralogical composition. Illite and chlorite were the dominant clay minerals in the till whereas muscovite and kaolinite were the major minerals in the saprolite. A comparison was also made with another previously described saprolite deposit 4 km away from this one, in which chlorite was slightly transformed to smectite. It is suggested, from the mineral assemblages, that the two saprolites have probably formed at different times, the first one during Tertiary and the second one during an interglacial stage. Key words: Saprolite, glacial diamicton, kaolinite, muscovite, Tertiary alteration


1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 699-707 ◽  
Author(s):  
A. Mirabella ◽  
M. Egli ◽  
S. Carnicelli ◽  
G. Sartori

AbstractThe formation of clay minerals was investigated in Spodosols developed in the subalpine belt, with similar exposure, climate and age, but deriving from different parent materials. All the soils were classified as Haplic Podzols and showed the characteristic eluviation and illuviation features of Fe, Al and organic carbon. However, varying parent material lithology led to different clay mineral assemblages in the soil. Smectite could be found in the E horizons of soils developed from granodiorite and tonalite materials. Its formation was strongly dependent on the presence of chlorite in the parent material. If nearly no other 2:1 mineral components, such as chlorite, are present in the lower soil horizons, then a residual micaceous mineral becomes the dominant clay mineral. The latter derives from a mica-vermiculite interstratified mineral.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shouxu Pan ◽  
Ming Zha ◽  
Changhai Gao ◽  
Jiangxiu Qu ◽  
Xiujian Ding

In order to examine the pore structure and reveal the fractal geometric nature of shales, a series of laboratory experiments were conducted on lacustrine shale samples cored from the Kongdian Formation. Based on the low temperature nitrogen adsorption, fluorescent thin section and field emission scanning electronic microscope, a comprehensive pore structure classification and evaluation were conducted on shale samples. Fractal dimensions D1 and D2 (with relative pressure of 0–0.45 and 0.45–1.00, respectively) were obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH) method. With additional means of X-ray diffraction analysis, total organic carbon content analysis and thermal maturity analysis, the relationships between pore structure parameters, fractal dimensions, TOC content and mineral composition are presented and discussed in this paper. The results show that interparticle pores and microfractures are predominant, whereas organic matter pores are rarely found. The pore morphology is primarily featured with wide-open ends and slit-shaped structures. In terms of pore scale, mesopores and macropores are predominant. The value of fractal dimension D1 representing small pores ranges from 2.0173 to 2.4642 with an average of 2.1735. The value of D2 which represents large pores ranges from 2.3616 to 2.5981 with an average of 2.4960. These low numbers are an indication of few pore types and relatively low heterogeneity. In addition, smaller D1 values reveal that large pores have more complicated spatial structures than smaller ones. The results of correlation analysis show that: 1) D2 is correlated positively with specific surface area but negatively with average pore diameter; 2) D1 and D2 literally show no obvious relationship with mineral composition, TOC content or vitrinite reflectance (Ro); 3) both total Barrett-Joyner-Halenda (BJH) volume and specific surface area show a positive relationship with dolomite content and a negative relationship with felsic minerals content. These results demonstrate that the pore types are relatively few and dominated by mesopores, and the content of brittle minerals such as dolomite and felsic minerals control the pore structure development whilst organic matter and clay minerals have less influence due to low thermal maturity and abundance of clay minerals.


Author(s):  
Rasma Tretjakova ◽  
Andris Karpovičs

Our research is focused on sedimentological conditions and postdepositional changes of recent fine grained lake sediments. We used bulk sediment mineralogical composition and grain size distribution as indicators to identify sediment source areas and possible changes during Holocene. We analysed fine grained (clayey) sediments from three Latgale lakes - Zeili, Pauguļi and Plusons, situated in Latgale upland. Lake sediments cover Late Pleistocene glacial deposits – loam and sandy loam. Bulk mineral composition of 6 sediment samples was determined by X-ray diffraction (XRD). Sediments contained typical minerals found in surrounding glacial sediments: rock-forming minerals as quartz, plagioclase, albite, enstatite, dolomite, calcite, and clay minerals - illite, kaolinite. To identify postdepositional changes in lake sediments of Holocene age clay minerals in clay fraction (<2 mkm) should be analysed. Particularly illite, smectite mixed layered minerals - illite/smectite (I/Sm) and chlorite. Additionally, grain size distribution of studied lake sediments was analysed. Accordingly, our studied sediments are clays, silty clays and clayey silts with bimodal particle distribution, except two samples from Zeiļi and Plusons with unimodal distribution.


2021 ◽  
Vol 21 (1) ◽  
pp. 168-180
Author(s):  
Bao-Xin Zhang ◽  
Xue-Hai Fu ◽  
Yu-Lin Shen ◽  
Qing-Hui Zhang ◽  
Ze Deng

There is a large difference between the sedimentary environment and maturity of organic matter between marine shale and marine-continental transitional shale. It is of great significance to discuss the effect of inorganicminerals on the pores for marine-continental transitional shale gas exploration. In this study, scanning electron microscopy (SEM), low temperature liquid nitrogen adsorption and Xray diffraction (XRD) were conducted on eight marine-continental transitional shale samples from the Ningwu Basin, Shanxi Province, China. The pore structure differences in the different minerals were discussed, and the relationship between the mineral content and pore parameters was analysed. The results show that the mineral composition of shale is dominated by clay minerals, quartz, carbonate minerals and a small amount of pyrite. The clay minerals content is between 39.5% and 77.0%, with an average of 59.9%. The quartz content ranges from 21.8% to 47.8%, with an average of 31.9%. The carbonate minerals content in shale is between 0.6% and 23.9%, and the average is 6.3%. The clay minerals are composed of mixed illite-montmorillonite layer, kaolinite and chlorite. The content of mixed illite-montmorillonite layer is between 13.8% and 27.4%, with an average of 20.4%. The kaolinite content ranges from 57.0% to 86.2%, with an average of 76.0%. The content of chlorite is between 0 and 15.6%, with an average of 5.7%. The types of pores are mainly intergranular pores and interlaminar pores, which are mostly presented as slit and parallel plates. The mixed illite-montmorillonite layer contributes more to the specific surface area, which is favourable for shale gas adsorption. The pores in kaolinite are more developed than those of the mixed illite-montmorillonite layer, but the pore diameter is relatively large. The quartz granule has a complete crystal type, and intergranular pores with a large pore size are often developed at the mineral contacts. Compared with clay minerals and quartz, the pore development in the carbonate minerals is relatively poor and develops more micro-fractures. The pyrite contributes a certain number of intergranular pores and mold pores.


Sign in / Sign up

Export Citation Format

Share Document