Genetic Classification of Petroleum Systems (1)

AAPG Bulletin ◽  
1991 ◽  
Vol 75 ◽  
Author(s):  
GERARD DEMAISON (2) and BRADLEY J.
2021 ◽  
Author(s):  
Yoshikage Inoue ◽  
Nobuyuki Kakiuchi ◽  
Kenichi Yoshida ◽  
Yasuhito Nanya ◽  
Yusuke Shiozawa ◽  
...  

Author(s):  

Rice is a world-famous cereal food divided into pigmented and non-pigmented rice. Pigmented rice is popular as healthier food than non-pigmented rice due to its potency as an antioxidant. Nevertheless, the potential of pigmented rice has not been widely studied. Indonesian selected pigmented rice protein’s antioxidant potential and the non-protein compound were in-vitro studied. The antioxidant potencies were evaluated by extracting fresh seeds of nine pigmented rice (Aek Sibundong, Beureum Taleus, Gogo Niti-2, Lamongan-1, Merah SP, Merah Wangi, Mota, Ketan Hitam-2, and Super Manggis) and non-pigmented rice (IR-64) as control. Various free radical scavenging methods to determine the antioxidant activity (ABTS•+, DPPH•, OH• and O2-) were conducted. Meanwhile, the genetic classification was performed by a simple sequence repeat (SSR) marker to determine the relationship between varieties. The results showed that protein of Ketan Hitam-2 had the highest ABTS•+ radical scavenging (98.06%), followed by Beureum Taleus (42.54%). Ketan Hitam-2 protein also showed the highest OH• and O2- activities (43.49% and 6.02%, respectively). The highest DPPH• potency of the non-protein compounds also shown by Ketan Hitam-2 (32.23%) with the activity of OH• and O2- (20.63% and 14.56%, respectively). These results showed that Ketan Hitam-2 has the highest potency as an antioxidant, which could be recommended as a nutraceuticals compound.


2018 ◽  
Vol 20 (suppl_5) ◽  
pp. v346-v346
Author(s):  
Laurent James Livermore ◽  
Martin Isabelle ◽  
Ian Bell ◽  
Puneet Plaha ◽  
Claire Vallance ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 412-416 ◽  
Author(s):  
Emanuela Molinari ◽  
Olimpia E Curran ◽  
Robin Grant

In 2016, the WHO incorporated molecular markers, in addition to histology, into the diagnostic classification of central nervous system (CNS) tumours. This improves diagnostic accuracy and prognostication: oligo-astrocytoma no longer exists as a clinical entity; isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted oligodendroglioma is a smaller category with better prognosis; IDH wild-type ‘low-grade’ glioma has a much poorer prognosis; and glioblastoma is divided into IDH mutant (with an better prognosis than pre-2016 glioblastoma) and IDH wild type (with a poorer prognosis). Previous advice based on phenotype alone will change with respect to median survival, best management plan and response to treatment. There are implications for routine neuropathology reporting and future trial design. Cases that are difficult to classify may need more advanced molecular genetic classification through DNA methylation-based classification of CNS tumours (Heidelberg Classifier). We discuss the practical implications.


Sign in / Sign up

Export Citation Format

Share Document