Disposal of Nuclear Waste by In Situ Incorporation in Deep Molten Silicate Rock: ABSTRACT

AAPG Bulletin ◽  
1971 ◽  
Vol 55 ◽  
Author(s):  
J. J. Cohen, A. E. Lewis, R. L. Bra
1972 ◽  
Vol 14 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Jerry J. Cohen ◽  
Arthur E. Lewis ◽  
Robert L. Braun

1981 ◽  
Vol 6 ◽  
Author(s):  
Paul G. Huray ◽  
M. T. Spaar ◽  
S. E. Nave ◽  
J. M. Legan ◽  
L. A. Boatner ◽  
...  

The electronic charge states and site symmetries of the radioactive ions incorporated in nuclear waste forms are of considerable importance in determining the physical and chemical properties of these materials. An in situ characterization of these ions is, unfortunately, often difficult – especially when a mixture of charge states and local crystal symmetries exist. The application of Mbssbauer spectroscopy represents a powerful technique for obtaining solid state chemical information.


1996 ◽  
Vol 42 (4) ◽  
pp. 375-381 ◽  
Author(s):  
David C. White ◽  
David B. Ringelberg

Microbes with their resistance to heat and radioactivity, if present and metabolically active, could have major effects on the safety of nuclear waste disposal by posing potential problems in long-term containment. This paper reviews the applicability of the signature lipid biomarker (SLB) analysis in the quantitative assessment of the viable biomass, community composition, and nutritional/physiological status of the subsurface microbiota as it exists in situ in subsurface samples. The samples described in this review are not unlike those expected to be recovered from proposed deep subsurface disposal sites. Assessment of the microbial community ecology using SLB analysis can be utilized to predict potential problems engendered by microbial metabolic activities of these communities in breaching containment by microbially facilitated corrosion and in the potential for subsequent facilitated transport of nuclides into the environment. SLB analysis of the in situ microbial ecology can be utilized to monitor the feasibility of containment options in modeling tests at the specific disposal sites.Key words: nuclear waste, deep subsurface, microbiota, microbial corrosion, safe long-term storage, signature lipid biomarkers.


2018 ◽  
Vol 47 (30) ◽  
pp. 10229-10239 ◽  
Author(s):  
Wayne W. Lukens ◽  
Sarah A. Saslow

The fission product, 99Tc, presents significant challenges to the long-term disposal of nuclear waste due to its long half-life, high fission yield, and to the environmental mobility of pertechnetate (TcO4−), the stable Tc species in aerobic environments.


2012 ◽  
Vol 252 ◽  
pp. 278-288 ◽  
Author(s):  
Won-Jin Cho ◽  
Jin-Sub Kim ◽  
Changsoo Lee ◽  
Sangki Kwon ◽  
Jong-Won Choi

Sign in / Sign up

Export Citation Format

Share Document