Organic Geochemistry and Petroleum Potential of Pennsylvanian Black Shales, Powder River and Denver Basins: ABSTRACT

AAPG Bulletin ◽  
1987 ◽  
Vol 71 ◽  
Author(s):  
J. L. Clayton, C. M. Lubeck, J. D.
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 811
Author(s):  
Gabriel A. Barberes ◽  
Rui Pena dos Reis ◽  
Nuno L. Pimentel ◽  
André L. D. Spigolon ◽  
Paulo E. Fonseca ◽  
...  

The Baixo Alentejo Flysch Group (BAFG) is an important stratigraphic unit that covers over half of the South Portuguese Zone (SPZ) depositional area, and it is composed by three main tectono-stratigraphic units: the Mértola, Mira, and Brejeira formations. All of these formations contain significant thicknesses of black shales and have several wide areas with 0.81 wt.%, 0.91 wt.%, and 0.72 wt.% average total organic carbon (TOC) (respectively) and thermal maturation values within gas zones (overmature). This paper is considering new data from classical methods of organic geochemistry characterization, such as TOC, Rock–Eval pyrolysis, and organic petrography, to evaluate the unconventional petroleum system from the SPZ. A total of 53 samples were collected. From the stratigraphical point of view, TOC values seem to have a random distribution. The Rock–Eval parameters point out high thermal maturation compatible with gas window (overmature zone). The samples are dominated by gas-prone extremely hydrogen-depleted type III/IV kerogen, which no longer has the potential to generate and expel hydrocarbons. The petrographic analyses positioned the thermal evolution of these samples into the end of catagenesis to metagenesis (wet to dry gas zone), with values predominantly higher than 2 %Ro (dry gas zone). The presence of thermogenic hydrocarbon fluids characterized by previous papers indicate that the BAFG from SPZ represents a senile unconventional petroleum system, working nowadays basically as a gas reservoir.


2020 ◽  
Vol 60 (2) ◽  
pp. 722
Author(s):  
Amber J. M. Jarrett ◽  
Adam E. H. Bailey ◽  
Christopher J. Boreham ◽  
Tehani Palu ◽  
Lisa Hall ◽  
...  

The Lawn Hill Platform (LHP) is a sedimentary province in north-eastern Northern Territory and north-western Queensland that hosts a significant Paleoproterozoic–Mesoproterozoic sequence, often referred to as 'the ‘Isa Superbasin’, and includes the overlying South Nicholson Group. Shale gas resources and base-metals mineralisation are known in north-west Queensland, but the larger basin is underexplored. The Australian Government’s Exploring for the Future (EFTF) 2016−2020 program aims to boost resource exploration in northern Australia. New precompetitive geochemical data obtained in this program includes source rock geochemistry, kerogen kinetics, bitumen reflectance, biomarker and δ13C n-alkanes for understanding the petroleum potential, organic geochemistry of source rocks and fluids, stratigraphic correlations and mineralogy to determine the brittleness of shales. All data and derived reports are accessible on the EFTF portal (www.eftf.ga.gov.au), providing a central location for informed decision making. The results in this study demonstrate fair to excellent source rocks in multiple supersequences that are brittle and favourable to hydraulic stimulation. A comparison to the greater McArthur Basin demonstrates, that although there are many similarities in bulk geochemistry, LHP mudstones are largely heterogeneous, reflecting local variations that may be inherited from variations in contributing biomass, microbial reworking, depositional environment, sediment input and paleoredox conditions.


Author(s):  
Benatus Norbert Mvile ◽  
Emily Barnabas Kiswaka ◽  
Olawale Olakunle Osinowo ◽  
Isaac Muneji Marobhe ◽  
Abel Idowu Olayinka ◽  
...  

AbstractIn this study, the available 2D seismic lines have been interpreted to understand the basin development and petroleum potential of the Late Cretaceous–Quaternary stratigraphy of the Tanga offshore Basin in Tanzania. Conventional seismic interpretation has delineated eight sedimentary fill geometries, fault properties, stratal termination patterns and unconformities characterizing the studied stratigraphy. The Late Cretaceous was found to be characterized by tectonic quiescence and uniform subsidence where slope induced gravity flows that resulted during the Miocene block movements was the major mechanism of sediment supply into the basin. The Quaternary was dominated by extensional regime that created deep N-S to NNE-SSW trending graben. The graben accommodated thick Pleistocene and Holocene successions deposited when the rate of tectonic uplift surpasses the rate of sea level rise. Thus, the deposition of lowstand system tracts characterized by debris flow deposits, slope fan turbidites, channel fill turbidites and overbank wedge deposits, known for their excellent petroleum reservoir qualities, especially where charged by Karoo Black Shales. Subsequent tectonic quiescence and transgression lead to the emplacement of deep marine deposits with characteristic seismic reflection patterns that indicate the occurrence of Quaternary shale sealing rocks in the study area. The occurrence of all the necessary petroleum play systems confirms the hydrocarbon generation, accumulations and preservation potential in the Tanga Basin.


Sign in / Sign up

Export Citation Format

Share Document