scholarly journals A class of operator algebras induced by probabilistic conditional expectations.

1993 ◽  
Vol 40 (2) ◽  
pp. 359-376 ◽  
Author(s):  
Alan Lambert ◽  
Barnet M. Weinstock
10.29007/jbdq ◽  
2018 ◽  
Author(s):  
Silvia Pulmannova

A state operator on effect algebras is introduced as an additive, idempotent and unital mapping from the effect algebra into itself. The definition is inspired by the definition of an internal state on MV-algebras, recently introduced by Flaminio and Montagna. We study state operators on convex effect algebras, and show their relations with conditional expectations on operator algebras.


2007 ◽  
Vol 2007 ◽  
pp. 1-22 ◽  
Author(s):  
Atsushi Inoue ◽  
Hidekazu Ogi ◽  
Mayumi Takakura

Two conditional expectations in unbounded operator algebras (O∗-algebras) are discussed. One is a vector conditional expectation defined by a linear map of anO∗-algebra into the Hilbert space on which theO∗-algebra acts. This has the usual properties of conditional expectations. This was defined by Gudder and Hudson. Another is an unbounded conditional expectation which is a positive linear mapℰof anO∗-algebraℳonto a givenO∗-subalgebra𝒩ofℳ. Here the domainD(ℰ)ofℰdoes not equal toℳin general, and so such a conditional expectation is called unbounded.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Dan Xie ◽  
Wenbin Yan

Abstract We identify vertex operator algebras (VOAs) of a class of Argyres-Douglas (AD) matters with two types of non-abelian flavor symmetries. They are the W algebras defined using nilpotent orbit with partition [qm, 1s]. Gauging above AD matters, we can find VOAs for more general $$ \mathcal{N} $$ N = 2 SCFTs engineered from 6d (2, 0) theories. For example, the VOA for general (AN − 1, Ak − 1) theory is found as the coset of a collection of above W algebras. Various new interesting properties of 2d VOAs such as level-rank duality, conformal embedding, collapsing levels, coset constructions for known VOAs can be derived from 4d theory.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Emilio Gómez-Déniz ◽  
Enrique Calderín-Ojeda

We jointly model amount of expenditure for outpatient visits and number of outpatient visits by considering both dependence and simultaneity by proposing a bivariate structural model that describes both variables, specified in terms of their conditional distributions. For that reason, we assume that the conditional expectation of expenditure for outpatient visits with respect to the number of outpatient visits and also, the number of outpatient visits expectation with respect to the expenditure for outpatient visits is related by taking a linear relationship for these conditional expectations. Furthermore, one of the conditional distributions obtained in our study is used to derive Bayesian premiums which take into account both the number of claims and the size of the correspondent claims. Our proposal is illustrated with a numerical example based on data of health care use taken from Medical Expenditure Panel Survey (MEPS), conducted by the U.S. Agency of Health Research and Quality.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 237
Author(s):  
Rostislav Grigorchuk ◽  
Supun Samarakoon

Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association with studies around the Banach-Tarski Paradox) and John Milnor’s question on the existence of groups of intermediate growth between polynomial and exponential. Fractal groups arise in various fields of mathematics, including the theory of random walks, holomorphic dynamics, automata theory, operator algebras, etc. They have relations to the theory of chaos, quasi-crystals, fractals, and random Schrödinger operators. One important development is the relation of fractal groups to multi-dimensional dynamics, the theory of joint spectrum of pencil of operators, and the spectral theory of Laplace operator on graphs. This paper gives a quick access to these topics, provides calculation and analysis of multi-dimensional rational maps arising via the Schur complement in some important examples, including the first group of intermediate growth and its overgroup, contains a discussion of the dichotomy “integrable-chaotic” in the considered model, and suggests a possible probabilistic approach to studying the discussed problems.


2021 ◽  
Vol 573 ◽  
pp. 451-475
Author(s):  
Hiromichi Yamada ◽  
Hiroshi Yamauchi

2020 ◽  
Vol 18 (1) ◽  
pp. 1615-1624
Author(s):  
Guangyu An ◽  
Ying Yao

Abstract In this paper, we study the Hyers-Ulam-Rassias stability of ( m , n ) (m,n) -Jordan derivations. As applications, we characterize ( m , n ) (m,n) -Jordan derivations on C ⁎ {C}^{\ast } -algebras and some non-self-adjoint operator algebras.


Sign in / Sign up

Export Citation Format

Share Document