scholarly journals Effect algebras with state operator

10.29007/jbdq ◽  
2018 ◽  
Author(s):  
Silvia Pulmannova

A state operator on effect algebras is introduced as an additive, idempotent and unital mapping from the effect algebra into itself. The definition is inspired by the definition of an internal state on MV-algebras, recently introduced by Flaminio and Montagna. We study state operators on convex effect algebras, and show their relations with conditional expectations on operator algebras.

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Biao Long Meng ◽  
Xiao Long Xin

We investigate relations of the two classes of filters in effect algebras (resp., MV-algebras). We prove that a lattice filter in a lattice ordered effect algebra (resp., MV-algebra) does not need to be an effect algebra filter (resp., MV-filter). In general, in MV-algebras, every MV-filter is also a lattice filter. Every lattice filter in a lattice ordered effect algebra is an effect algebra filter if and only if is an orthomodular lattice. Every lattice filter in an MV-algebra is an MV-filter if and only if is a Boolean algebra.


10.14311/1398 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
M. Kalina

Lattice effect algebras generalize orthomodular lattices as well as MV-algebras. This means that within lattice effect algebras it is possible to model such effects as unsharpness (fuzziness) and/or non-compatibility. The main problem is the existence of a state. There are lattice effect algebras with no state. For this reason we need some conditions that simplify checking the existence of a state. If we know that the center C(E) of an atomic Archimedean lattice effect algebra E (which is again atomic) is a bifull sublattice of E, then we are able to represent E as a subdirect product of lattice effect algebras Ei where the top element of each one of Ei is an atom of C(E). In this case it is enough if we find a state at least in one of Ei and we are able to extend this state to the whole lattice effect algebra E. In [8] an atomic lattice effect algebra E (in fact, an atomic orthomodular lattice) with atomic center C(E) was constructed, where C(E) is not a bifull sublattice of E. In this paper we show that for atomic lattice effect algebras E (atomic orthomodular lattices) neither completeness (and atomicity) of C(E) nor σ-completeness of E are sufficient conditions for C(E) to be a bifull sublattice of E.


2016 ◽  
Vol 66 (6) ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

AbstractA mutual relationship between MV-algebras and coupled semirings as established by L. P. Belluce, A. Di Nola, A. R. Ferraioli and B. Gerla is extended to lattice effect algebras and so-called characterizing triples. We show that this correspondence is in fact one-to-one and hence every lattice effect algebra can be considered as an ordered triple consisting of two semiring-like structures and an antitone involution which is an isomorphism between these structures.


2011 ◽  
Vol 61 (3) ◽  
Author(s):  
David Foulis ◽  
Sylvia Pulmannová

AbstractAn effect algebra (EA) is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. The class of EAs includes, as special cases, several partially ordered algebraic structures, including orthomodular lattices (OMLs) and orthomodular posets (OMPs), hitherto used as mathematical models for experimentally verifiable propositions pertaining to physical systems. Moreover, MV-algebras, which are mathematical models for many-valued logics, are special cases of EAs. The present paper studies generalizations to EAs of the hull mapping featured in L. Loomis’s dimension theory for complete OMLs and develops a theory of direct decomposition for EAs with a hull mapping. A. Sherstnev and V. Kalinin have extended Loomis’s dimension theory to orthocomplete OMPs, and here it is further extended to orthocomplete EAs; moreover, a corresponding direct decomposition into types I, II, and III is obtained using the hull mapping induced by the dimension equivalence relation.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Jiří Rachůnek ◽  
Dana Šalounová

AbstractBounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure).


Author(s):  
Simin Saidi Goraghani ◽  
Rajab Ali Borzooei

 In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some interesting topologies on effect modules.


Author(s):  
Malte Gerhold ◽  
Michael Skeide

We present a new more flexible definition of interacting Fock space that allows to resolve in full generality the problem of embeddability. We show that the same is not possible for regularity. We apply embeddability to classify interacting Fock spaces by squeezings. We give necessary and sufficient criteria for when an interacting Fock space has only bounded creators, giving thus rise to new classes of non-selfadjoint and selfadjoint operator algebras.


2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Ivan Chajda

AbstractHaving an MV-algebra, we can restrict its binary operation addition only to the pairs of orthogonal elements. The resulting structure is known as an effect algebra, precisely distributive lattice effect algebra. Basic algebras were introduced as a generalization of MV-algebras. Hence, there is a natural question what an effect-like algebra can be reached by the above mentioned construction if an MV-algebra is replaced by a basic algebra. This is answered in the paper and properties of these effect-like algebras are studied.


2020 ◽  
Vol 3 (12) ◽  
pp. 118-124
Author(s):  
M. A. ABUGALIYEVA ◽  
◽  
B. A. ALIBEKOVA ◽  

The article deals with the activities of the authorized body for internal state audit in the Republic of Kazakhstan. The author's definition of internal state audit is given. The analysis of the activities of the Internal State Audit Committee of the Ministry of Finance of the Republic of Kazakhstan was carried out and problematic aspects were identified. Reasonable suggestions have been made to resolve the problems.


2021 ◽  
Vol 71 (3) ◽  
pp. 523-534
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract Effect algebras form a formal algebraic description of the structure of the so-called effects in a Hilbert space which serve as an event-state space for effects in quantum mechanics. This is why effect algebras are considered as logics of quantum mechanics, more precisely as an algebraic semantics of these logics. Because every productive logic is equipped with implication, we introduce here such a concept and demonstrate its properties. In particular, we show that this implication is connected with conjunction via a certain “unsharp” residuation which is formulated on the basis of a strict unsharp residuated poset. Though this structure is rather complicated, it can be converted back into an effect algebra and hence it is sound. Further, we study the Modus Ponens rule for this implication by means of so-called deductive systems and finally we study the contraposition law.


Sign in / Sign up

Export Citation Format

Share Document