scholarly journals Integrable and Chaotic Systems Associated with Fractal Groups

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 237
Author(s):  
Rostislav Grigorchuk ◽  
Supun Samarakoon

Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association with studies around the Banach-Tarski Paradox) and John Milnor’s question on the existence of groups of intermediate growth between polynomial and exponential. Fractal groups arise in various fields of mathematics, including the theory of random walks, holomorphic dynamics, automata theory, operator algebras, etc. They have relations to the theory of chaos, quasi-crystals, fractals, and random Schrödinger operators. One important development is the relation of fractal groups to multi-dimensional dynamics, the theory of joint spectrum of pencil of operators, and the spectral theory of Laplace operator on graphs. This paper gives a quick access to these topics, provides calculation and analysis of multi-dimensional rational maps arising via the Schur complement in some important examples, including the first group of intermediate growth and its overgroup, contains a discussion of the dichotomy “integrable-chaotic” in the considered model, and suggests a possible probabilistic approach to studying the discussed problems.

2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


1977 ◽  
Vol 81 (2) ◽  
pp. 237-243 ◽  
Author(s):  
J. Moffat

In section 3 we shall prove the following results: Let G be a separable locally compact abelian group, R a von Neumann algebra acting on a separable Hilbert space, and α a weakly continuous representation of G by inner *-automorphisms of R, say α(g) = ad Wg with Wg ∈ U(R). Then there is a weakly continuous unitary representation of G, by unitaries in R, implementing α if and only if the Wg's commute with each other. The result was motivated by the proof of (7), theorem 1. Suppose now Gis a discrete amenable group of *-automorphisms of a countably decomposable von Neumann algebra R. In section 3 we give a necessary and sufficient condition for the existence of a faithful normal G-invariant state on R. This generalizes a result of Hajian and Kakutani on invariant measures (2).


2003 ◽  
Vol 86 (2) ◽  
pp. 463-484 ◽  
Author(s):  
A. KATAVOLOS ◽  
I. G. TODOROV

The set of normalizers between von Neumann (or, more generally, reflexive) algebras $\mathcal{A}$ and $\mathcal{B}$ (that is, the set of all operators $T$ such that $T \mathcal{A} T^{\ast} \subseteq \mathcal{B}$ and $T^{\ast} \mathcal{B} T \subseteq \mathcal{A}$) possesses ‘local linear structure’: it is a union of reflexive linear spaces. These spaces belong to the interesting class of normalizing linear spaces, namely, those linear spaces $\mathcal{U}$ of operators satisfying $\mathcal{UU}^{\ast} \mathcal{U} \subseteq \mathcal{U}$ (also known as ternary rings of operators). Such a space is reflexive whenever it is ultraweakly closed, and then it is of the form $\mathcal{U} = \{T : TL = \phi (L) T$ for all $L \in \mathcal{L}\}$ where $\mathcal{L}$ is a set of projections and $\phi$ a certain map defined on $\mathcal{L}$. A normalizing space consists of normalizers between appropriate von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$. Necessary and sufficient conditions are found for a normalizing space to consist of normalizers between two reflexive algebras. Normalizing spaces which are bimodules over maximal abelian self-adjoint algebras consist of operators ‘supported’ on sets of the form $[f = g]$ where $f$ and $g$ are appropriate Borel functions. They also satisfy spectral synthesis in the sense of Arveson.2000 Mathematical Subject Classification: 47L05 (primary), 47L35, 46L10 (secondary).


1983 ◽  
Vol 35 (4) ◽  
pp. 710-723
Author(s):  
C. Robert Miers ◽  
John Phillips

Let A be a C*-algebra, let p be a polynomial over C, and let a in M(A) (the multiplier algebra of A) be such that p(ad a) = 0. In this paper we study the following problem: when does there exist λ in Z(M(A)) (the centre of M(A)) such that p(a – λ) = 0? The first result of this type known to us is due to I. N. Herstein [7], who showed that for a simple ring with identity, such a λ always exists when p is of the form p(x) = xk for some positive integer k. Later, in [8], C. R. Miers showed that the result is true for any primitive unital C*-algebra and any polynomial whatever. It was also shown in [8] that if A is a unital C*-algebra acting on H and p is any polynomial, then such a λ exists in the larger algebra Z(A″). In particular, the strict result holds for any von Neumann algebra, A.


1988 ◽  
Vol 40 (6) ◽  
pp. 1482-1527 ◽  
Author(s):  
Antony Wassermann

In the first paper of this series [17], we set up some general machinery for studying ergodic actions of compact groups on von Neumann algebras, namely, those actions for which . In particular we obtained a characterisation of the full multiplicity ergodic actions:THEOREM A. If α is an ergodic action of G on , then the following conditions are equivalent:(1) Each spectral subspace has multiplicity dim π for π in .(2) Each π in admits a unitary eigenmatrix in .(3) The W* crossed product is a (Type I) factor.(4) The C* crossed product of the C* algebra of norm continuity is isomorphic to the algebra of compact operators on a Hilbert space.


Author(s):  
Yunping Jiang

This chapter reviews the characterization of geometrically finite rational maps and then outlines a framework for characterizing holomorphic maps. Whereas Thurston's methods are based on estimates of hyperbolic distortion in hyperbolic geometry, the framework suggested here is based on controlling conformal distortion in spherical geometry. The new framework enables one to relax two of Thurston's assumptions: first, that the iterated map has finite degree and, second, that its post-critical set is finite. Thus, it makes possible to characterize certain rational maps for which the post-critical set is not finite as well as certain classes of entire and meromorphic coverings for which the iterated map has infinite degree.


2005 ◽  
Vol 79 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Paul Jolissaint

AbstractLet F′ be the commutator subgroup of F and let Γ0 be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor L(F′), and we prove that the abelian von Neumann algebra L(Γ0) is a strongly singular MASA in L(F). We also prove that the natural action of F on [0, 1] is ergodic and that its ratio set is {0} ∪ {2k; k ∞ Z}.


Sign in / Sign up

Export Citation Format

Share Document