Documenting the Full Climate Benefits of Harvested Wood Products in Northern California: Linking Harvests to the Us Greenhouse Gas Inventory

2012 ◽  
Vol 62 (5) ◽  
pp. 340-353 ◽  
Author(s):  
William C. Stewart ◽  
Gary M. Nakamura
2018 ◽  
Vol 91 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Jiaxin Chen ◽  
Michael T Ter-Mikaelian ◽  
Hongqiang Yang ◽  
Stephen J Colombo

Author(s):  
Sampo Soimakallio ◽  
Tuomo Kalliokoski ◽  
Aleksi Lehtonen ◽  
Olli Salminen

AbstractForest biomass can be used in two different ways to limit the growth of the atmospheric greenhouse gas (GHG) concentrations: (1) to provide negative emissions through sequestration of carbon into forests and harvested wood products or (2) to avoid GHG emissions through substitution of non-renewable raw materials with wood. We study the trade-offs and synergies between these strategies using three different Finnish national-level forest scenarios between 2015 and 2044 as examples. We demonstrate how GHG emissions change when wood harvest rates are increased. We take into account CO2 and other greenhouse gas flows in the forest, the decay rate of harvested wood products and fossil-based CO2 emissions that can be avoided by substituting alternative materials with wood derived from increased harvests. We considered uncertainties of key parameters by using stochastic simulation. According to our results, an increase in harvest rates in Finland increased the total net GHG flow to the atmosphere virtually certainly or very likely, given the uncertainties and time frame considered. This was because the increased biomass-based CO2 and other greenhouse gas emissions to the atmosphere together with decreased carbon sequestration into the forest were very likely higher than the avoided fossil-based CO2 emissions. The reverse of this conclusion would require that compared to what was studied in this paper, the share of long-living wood products in the product mix would be higher, carbon dioxide from bioenergy production would be captured and stored, and reduction in forest carbon equivalent net sink due to wood harvesting would be minimized.


2018 ◽  
Vol 8 (12) ◽  
pp. 1109-1112 ◽  
Author(s):  
Stephen Crooks ◽  
Ariana E. Sutton-Grier ◽  
Tiffany G. Troxler ◽  
Nathaniel Herold ◽  
Blanca Bernal ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Atsushi Sato ◽  
Yukihiro Nojiri

Abstract Background There are multiple approaches for estimating emissions and removals arising from harvested wood products (HWP) based on differences between when and where a given carbon stock change is calculated. At this moment, countries are free to use any HWP approach to prepare their annual greenhouse gas (GHG) inventory and determine emission reduction targets for their Nationally Determined Contributions (NDCs), although under the Paris Agreement (PA), the production approach is used for standard reporting in GHG inventories. Global double-counting and non-counting of HWP might occur depending on the HWP approach each country uses; however, the impact of such double-counting and non-counting has not been thoroughly evaluated. Results We identified all cases of global double-counting and non-counting of HWP for combinations of the six HWP approaches: ‘instantaneous oxidation’, ‘stock-change’, ‘production’, ‘stock-changes approach for HWP of domestic origin (SCAD)’, ‘simple-decay’ and ‘atmospheric-flow’ approaches. In Intended Nationally Determined Contributions (INDCs), forest land is often partly or completely excluded, especially by developing countries. In such cases, HWP approaches that require comprehensive national data on wood harvesting and trade are not suitable for estimating HWP contributions. In addition, most developing countries apply the ‘instantaneous oxidation’ at the time of harvesting. Recent GHG inventories from Annex I countries show the averaged contribution of annual HWP emissions or removals to national total emissions is nearly 1%; therefore, the potential contribution of HWP to the accounted emission reduction volume is assumed to be a smaller value. Conclusions Instantaneous oxidation remains a pragmatic approach for countries in which wood production is not a dominant part of the economy. The combination of ‘instantaneous oxidation’ with the ‘production’, ‘SCAD’ or ‘simple-decay’ approaches could be a practical solution to realize a global HWP accounting approach the eliminates double-counting. Regardless of how global double-counting and non-counting occur, the amount is not large. To improve the accuracy of the global assessment, it is important to reduce the uncertainty of estimation regarding when and how much HWP-related emissions occur at national level.


Sign in / Sign up

Export Citation Format

Share Document