scholarly journals On the trade-offs and synergies between forest carbon sequestration and substitution

Author(s):  
Sampo Soimakallio ◽  
Tuomo Kalliokoski ◽  
Aleksi Lehtonen ◽  
Olli Salminen

AbstractForest biomass can be used in two different ways to limit the growth of the atmospheric greenhouse gas (GHG) concentrations: (1) to provide negative emissions through sequestration of carbon into forests and harvested wood products or (2) to avoid GHG emissions through substitution of non-renewable raw materials with wood. We study the trade-offs and synergies between these strategies using three different Finnish national-level forest scenarios between 2015 and 2044 as examples. We demonstrate how GHG emissions change when wood harvest rates are increased. We take into account CO2 and other greenhouse gas flows in the forest, the decay rate of harvested wood products and fossil-based CO2 emissions that can be avoided by substituting alternative materials with wood derived from increased harvests. We considered uncertainties of key parameters by using stochastic simulation. According to our results, an increase in harvest rates in Finland increased the total net GHG flow to the atmosphere virtually certainly or very likely, given the uncertainties and time frame considered. This was because the increased biomass-based CO2 and other greenhouse gas emissions to the atmosphere together with decreased carbon sequestration into the forest were very likely higher than the avoided fossil-based CO2 emissions. The reverse of this conclusion would require that compared to what was studied in this paper, the share of long-living wood products in the product mix would be higher, carbon dioxide from bioenergy production would be captured and stored, and reduction in forest carbon equivalent net sink due to wood harvesting would be minimized.

2016 ◽  
Author(s):  
Chris Swanston ◽  
Kristen Schmitt ◽  
Danielle Shannon ◽  
Jad Daley

The USDA Northern Forests Climate Hub (NFCH) and the Forest-Climate Working Group (FCWG) held a series of two workshops designed to identify specific opportunities within USDA programs to explicitly support greenhouse gas mitigation in the forest sector. The first workshop (Perspectives from the Field) gathered suggestions and ideas from field practitioners familiar with using USDA programs to support forest carbon benefits. The second workshop (Finding USDA Programmatic GHG Mitigation Opportunities) invited USDA Program leads and representatives to develop specific suggestions on modifications to USDA Programs that could assist in these efforts. The final outcome was a series of twelve ideas from USDA Program leads and representatives that took into account input from the field, and outlined specific needs for each idea. These twelve are listed below and summarized more completely in the Workshop summary section description.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2014 ◽  
Vol 11 (8) ◽  
pp. 2287-2294 ◽  
Author(s):  
Z. L. Cui ◽  
L. Wu ◽  
Y. L. Ye ◽  
W. Q. Ma ◽  
X. P. Chen ◽  
...  

Abstract. Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha−1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha−1 and 4783 kg CO2 eq ha−1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha−1, and 3555 kg CO2 eq ha−1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha−1, and 3905 kg CO2 eq ha−1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.


2014 ◽  
Vol 23 (6) ◽  
pp. 771 ◽  
Author(s):  
Liubov Volkova ◽  
C. P. Mick Meyer ◽  
Simon Murphy ◽  
Thomas Fairman ◽  
Fabienne Reisen ◽  
...  

A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.


2012 ◽  
Vol 427 ◽  
pp. 203-207
Author(s):  
Yu Shu Cui ◽  
Hong Ling Shao ◽  
Li Yan Ma

The forest carbon sinks play an important role in controlling the Greenhouse Gas emissions. The project management of wood carbon sequestration materials will be helpful to attract more and more enterprises to step into forestation, reforestation and technology development for improvement of forest management. That will create a sustainable situation that governments, NGO and corporations join together. Based on the domestic and foreign literature, the paper sorts out the current literature in the direction of forest carbon sequestration managements are from five aspects such as, carbon policy, carbon sequestration, carbon conservation, carbon substitution, carbon benefits. Based on this, the paper puts forward the policy and the long-term objectives of wood carbon sequestration materials should be integration of the implementation.


2021 ◽  
Author(s):  
Amulya Gurtu

Reducing supply chain costs is a primary concern of every organization. Organizations have implemented offshore outsourcing as an effective strategy towards reducing supply chain costs. However, neither government nor corporate organizations have sufficiently taken into account the effects of this strategy on global greenhouse gas (GHG) emissions. The purpose of this research is to analyze the impact of offshore outsourcing on global GHG emissions, and the effect of changes in fuel prices in addition to a carbon price on additional emissions on supply chain costs. The purpose is supported by five key objectives. The objectives are addressed through a systematic methodology. The analysis is supported by a literature review, and the development and testing of mathematical models. Finally, a framework to reduce global GHG emissions through a carbon price on differential emissions from manufacturing and additional emissions from international transportation is proposed. The findings suggest that offshore outsourcing has increased global emissions. The fuel prices are increasing at a rate higher than the overall rate. A carbon price on excess emissions due to outsourcing coupled with increasing fuel prices impacts supply chain costs adversely and leads to bigger lot-sizes. As an illustration at the national level, the framework showed that emissions for the USA increased by about 20% for every year between 2007 and 2010. As another example from a corporate organization, the net profit (profit after tax) for Wal-Mart was reduced by about 19% for 2006 due to a carbon price on manufacturing emissions alone. The suggested framework is a major contribution for quantifying the extent of changes in the emissions due to offshore outsourcing and the value of these emissions at a prevailing rate of carbon tax in North America. It is intended to provide a basis for reducing emissions and costs from global supply chains. The proposed framework provides a level playing field to manufacturers in different countries using different technologies, provides incentives to organizations for manufacturing in locations where net emissions are low, helps national governments determine how they can generate revenue for dealing with emissions, and, most importantly, aids in reducing overall global GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document