Effect of Alkaline Copper Quaternary Type D on Color Retention, Mold Resistance, and Surface Physicochemical Characterization of Neosinocalamus affinis Bamboo

2020 ◽  
Vol 70 (3) ◽  
pp. 302-308
Author(s):  
Lu He ◽  
Lin Chen ◽  
Jiulong Xie ◽  
Jinqiu Qi ◽  
Yongze Jiang ◽  
...  

Abstract The effect of alkaline copper quaternary type D (ACQ-D) treatment on color retention, mold resistance, and surface physicochemical characterization of Neosinocalamus affinis bamboo was analyzed. The results showed that a treatment of 0.25 percent ACQ-D solution combined with pretreatment of potassium hydroxide and sodium dodecyl sulfate mixed aqueous solution can achieve a desired green color on the bamboo surface. The mold test result revealed that the treated bamboo samples had better mold resistance than samples only treated with a mold inhibitor. The thermogravimetric–Fourier-transform infrared spectroscopy analysis of the treated and the control samples indicated that the chemical structure of the surface was slightly modified, e.g., silicon was almost completely removed, which enhanced liquid permeability. The dilute ACQ-D solution combined with a proper pretreatment process could retain the favorable green color of bamboo and also improve mold resistance by slightly modifying the surface chemistry.

Author(s):  
Ruchama Baum ◽  
J.T. Seto

The ribonucleic acid (RNA) of paramyxoviruses has been characterized by biochemical and physiochemical methods. However, paramyxovirus RNA molecules have not been studied by electron microscopy. The molecular weights of these single-stranded viral RNA molecules are not known as yet. Since electron microscopy has been found to be useful for the characterization of single-stranded RNA, this investigation was initiated to examine the morphology and length measurements of paramyxovirus RNA's.Sendai virus Z strain and Newcastle disease virus (NDV), Milano strain, were used. For these studies it was necessary to develop a method of extracting RNA molecules from purified virus particles. Highly purified Sendai virus was treated with pronase (300 μg/ml) at 37°C for 30 minutes and the RNA extracted by the sodium dodecyl sulfate (SDS)-phenol procedure.


2019 ◽  
Vol 38 (2) ◽  
pp. 385 ◽  
Author(s):  
Marwa M. El-Naggar ◽  
Wael S. I. Abou-Elmagd ◽  
Ashraf Suloma ◽  
Hamza A. El-Shabaka ◽  
Magdy T. Khalil ◽  
...  

Author(s):  
Kumar P ◽  
S Kumar ◽  
A Kumar ◽  
M Chander

The purpose of this study was to prepare and characterize solid dispersions of the antibacterial agent Cefdinir with PEG 4000 and PVP K-30 with a view to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Cefdinir was considerably improved when formulated in solid dispersions with PVP K-30 and PEG 4000 as compared with pure drug and physical mixtures. The results from XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction.


2013 ◽  
Vol 21 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Girijesh Patel ◽  
Amit Gupta ◽  
Akshita Gupta ◽  
Manisha Mishra ◽  
Pradhyumna Singh ◽  
...  

Author(s):  
Václav Kašička ◽  
Dušan Koval ◽  
Veronika Šolínová ◽  
Petra Sázelová ◽  
Zdeněk Prusík

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 544
Author(s):  
Giuditta Guerrini ◽  
Antonio Vivi ◽  
Sabrina Gioria ◽  
Jessica Ponti ◽  
Davide Magrì ◽  
...  

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum–ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen–adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.


Sign in / Sign up

Export Citation Format

Share Document