T2 Relaxation Times of the Cingulate Cortex, Amygdaloid Body, Hippocampal Body, and Insular Cortex: Comparison of 1.5 T and 3.0 T

Author(s):  
Ho-Joon Lee ◽  
Eung Yeop Kim
2021 ◽  
Vol 8 ◽  
Author(s):  
Shuang Li ◽  
Xuejing Duan ◽  
Guangxun Feng ◽  
Arlene Sirajuddin ◽  
Gang Yin ◽  
...  

Background: Cardiac magnetic resonance (CMR) has been shown to improve the diagnosis of myocarditis, but no systematic comparison of this technique is currently available. The purpose of this study was to compare the 2009 and 2018 Lake Louise Criteria (LLC) for the diagnosis of acute myocarditis using 3.0 T MRI with endomyocardial biopsy (EMB) as a reference and to provide the cutoff values for multiparametric CMR techniques.Methods: A total of 73 patients (32 ± 14 years, 71.2% men) with clinically suspected myocarditis undergoing EMB and CMR with 3.0 T were enrolled in the study. Patients were divided into two groups according to EMB results (EMB-positive and -negative groups). The CMR protocol consisted of cine-SSFP, T2 STIR, T2 mapping, early and late gadolinium enhancement (EGE, LGE), and pre- and post-contrast T1 mapping. Their potential diagnostic ability was assessed with receiver operating characteristic curves.Results: The myocardial T1 and T2 relaxation times were significantly higher in the EMB-positive group than in the EMB-negative group. Optimal cutoff values were 1,228 ms for T1 relaxation times and 58.5 ms for T2 relaxation times with sensitivities of 86.0 and 83.7% and specificities of 93.3 and 93.3%, respectively. The 2018 LLC had a better diagnostic performance than the 2009 LLC in terms of sensitivity, specificity, positive predictive value, and negative predictive value. T1 mapping + T2 mapping had the largest area under the curve (0.95) compared to other single or combined parameters (2018 LLC: 0.91; 2009 LLC: 0.76; T2 ratio: 0.71; EGEr: 0.67; LGE: 0.73; ). The diagnostic accuracy for the 2018 LLC was the highest (91.8%), followed by T1 mapping (89.0%) and T2 mapping (87.7%).Conclusion: Emerging technologies such as T1/ T2 mapping have significantly improved the diagnostic performance of CMR for the diagnosis of acute myocarditis. The 2018 LLC provided the overall best diagnostic performance in acute myocarditis compared to other single standard CMR parameters or combined parameters. There was no significant gain when 2018LLC is combined with the EGE sequence.


2014 ◽  
Vol 56 (11) ◽  
pp. 1388-1395 ◽  
Author(s):  
So-Yeon Lee ◽  
Hee-Jin Park ◽  
Heon-Ju Kwon ◽  
Mi Sung Kim ◽  
Seon Hyeong Choi ◽  
...  

Author(s):  
Kathrin Barbara Krug ◽  
Christina Jane Burke ◽  
Kilian Weiss ◽  
Pascal A. T. Baltzer ◽  
Kerstin Rhiem ◽  
...  

Abstract Objectives We examined the effects of aging and of gadolinium-based contrast agent (GBCA) exposure on MRI measurements in brain nuclei of healthy women. Methods This prospective, IRB-approved single-center case-control study enrolled 100 healthy participants of our high-risk screening center for hereditary breast cancer, who had received at least six doses of macrocyclic GBCA (exposed group) or were newly entering the program (GBCA-naïve group). The cutoff “at least six doses” was chosen to be able to include a sufficient number of highly exposed participants. All participants underwent unenhanced 3.0-T brain MRI including quantitative T1, T2, and R2* mapping and T1- and T2-weighted imaging. The relaxation times/signal intensities were derived from region of interest measurements in the brain nuclei performed by a radiologist and a neuroradiologist, both board certified. Statistical analysis was based on descriptive evaluations and uni-/multivariable analyses. Results The participants (exposed group: 49, control group: 51) were aged 42 ± 9 years. In a multivariable model, age had a clear impact on R2* (p < 0.001–0.012), T2 (p = 0.003–0.048), and T1 relaxation times/signal intensities (p < 0.004–0.046) for the majority of deep brain nuclei, mostly affecting the substantia nigra, globus pallidus (GP), nucleus ruber, thalamus, and dentate nucleus (DN). The effect of prior GBCA administration on T1 relaxation times was statistically significant for the DN, GP, and pons (p = 0.019–0.037). Conclusions In a homogeneous group of young to middle-aged healthy females aging had an effect on T2 and R2* relaxation times and former GBCA applications influenced the measured T1 relaxation times. Key Points The quantitative T1, T2, and R2* relaxation times measured in women at high risk of developing breast cancer showed characteristic bandwidth for all brain nuclei examined at 3.0-T MRI. The effect of participant age had a comparatively strong impact on R2*, T2, and T1 relaxation times for the majority of brain nuclei examined. The effect of prior GBCA administrations on T1 relaxation times rates was comparatively less pronounced, yielding statistically significant results for the dentate nucleus, globus pallidus, and pons. Summary statement Healthy women with and without previous GBCA-enhanced breast MRI exhibited age-related T2* and T2 relaxation alterations at 3.0 T-brain MRI. T1 relaxation alterations due to prior GBCA administration were comparatively less pronounced.


2021 ◽  
Vol 80 ◽  
pp. 81-89
Author(s):  
Nikolaos Dikaios ◽  
Nicholas E. Protonotarios ◽  
Athanasios S. Fokas ◽  
George A. Kastis

2021 ◽  
pp. 101836
Author(s):  
Kodama Saki ◽  
Hata Junichi ◽  
Kanawaku Yoshimasa ◽  
Nakagawa Hiroshi ◽  
Oshiro Hinako ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. SA77-SA89 ◽  
Author(s):  
John Doveton ◽  
Lynn Watney

The T2 relaxation times recorded by nuclear magnetic resonance (NMR) logging are measures of the ratio of the internal surface area to volume of the formation pore system. Although standard porosity logs are restricted to estimating the volume, the NMR log partitions the pore space as a spectrum of pore sizes. These logs have great potential to elucidate carbonate sequences, which can have single, double, or triple porosity systems and whose pores have a wide variety of sizes and shapes. Continuous coring and NMR logging was made of the Cambro-Ordovician Arbuckle saline aquifer in a proposed CO2 injection well in southern Kansas. The large data set gave a rare opportunity to compare the core textural descriptions to NMR T2 relaxation time signatures over an extensive interval. Geochemical logs provided useful elemental information to assess the potential role of paramagnetic components that affect surface relaxivity. Principal component analysis of the T2 relaxation time subdivided the spectrum into five distinctive pore-size classes. When the T2 distribution was allocated between grainstones, packstones, and mudstones, the interparticle porosity component of the spectrum takes a bimodal form that marks a distinction between grain-supported and mud-supported texture. This discrimination was also reflected by the computed gamma-ray log, which recorded contributions from potassium and thorium and therefore assessed clay content reflected by fast relaxation times. A megaporosity class was equated with T2 relaxation times summed from 1024 to 2048 ms bins, and the volumetric curve compared favorably with variation over a range of vug sizes observed in the core. The complementary link between grain textures and pore textures was fruitful in the development of geomodels that integrates geologic core observations with petrophysical log measurements.


1987 ◽  
Vol 28 (3) ◽  
pp. 345-351 ◽  
Author(s):  
L. Kjær ◽  
C. Thomsen ◽  
O. Henriksen ◽  
P. Ring ◽  
M. Stubgaard ◽  
...  

Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency=64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded that proton T1 and T2 relaxation times covering the majority of the biologic range can be measured by MRI with an overall accuracy of 5 to 10 per cent. Quality control studies along the lines indicated in this study are recommended.


1998 ◽  
Vol 159 (6) ◽  
pp. 2242-2243
Author(s):  
J.C. Varghese ◽  
P.F. Hahn ◽  
N. Papanicolaou ◽  
W.W. Mayo-Smith ◽  
J.A. Gaa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document